Skip to main content
PLOS One logoLink to PLOS One
. 2023 Jun 29;18(6):e0283082. doi: 10.1371/journal.pone.0283082

Analysis of the different interventions scenario for programmatic measles control in Bangladesh: A modelling study

Md Abdul Kuddus 1,2,*, Azizur Rahman 3, Farzana Alam 4, M Mohiuddin 5
Editor: Jan Rychtář6
PMCID: PMC10310053  PMID: 37384663

Abstract

In recent years measles has been one of the most critical public health problem in Bangladesh. Although the Ministry of Health in Bangladesh employs a broad extension of measles control policies, logistical challenges exist, and there is significant doubt regarding the disease burden. Mathematical modelling of measles is considered one of the most effective ways to understand infection transmission and estimate parameters in different countries, such as Bangladesh. In this study, a mathematical modelling framework is presented to explore the dynamics of measles in Bangladesh. We calibrated the model using cumulative measles incidence data from 2000 to 2019. Also, we performed a sensitivity analysis of the model parameters and found that the contact rate had the most significant influence on the basic reproduction number R0. Four hypothetical intervention scenarios were developed and simulated for the period from 2020 to 2035. The results show that the scenario which combines enhanced treatment for exposed and infected population, first and second doses of vaccine is the most effective at rapidly reducing the total number of measles incidence and mortality in Bangladesh. Our findings also suggest that strategies that focus on a single interventions do not dramatically affect the decline in measles incidence cases; instead, those that combine two or more interventions simultaneously are the most effective in decreasing the burden of measles incidence and mortality. In addition, we also evaluated the cost-effectiveness of varying combinations of three basic control strategies including distancing, vaccination and treatment, all within the optimal control framework. Our finding suggested that combines distancing, vaccination and treatment control strategy is the most cost-effective for reducing the burden of measles in Bangladesh. Other strategies can be comprised to measles depending on the availability of funds and policymakers’ choices.

1. Introduction

Some death-dealing contagious diseases infected many people in different areas of the world in the last few decades. Measles, a human respiratory disease, is one of these devastating human infectious diseases caused by a paramoxyviridae family virus [1]. The measles virus is naturally found in the human body, and it may be life-threatening for young children under the age of five years and adults older than the age of twenty years [2]. For developing the initial symptoms in the body of infected persons, measles takes 10–14 days as incubation time after the exposure of the virus, and the infected persons usually get well from illness in three weeks without any complications [3]. However, people who have a deficiency of vitamin A or suffer from malnutrition may face complications like diarrhea, ear infection, brain inflammation, pneumonia and blindness [4]. The clinical symptoms of measles are high fever, cough, runny nose, red eyes, sore throat, white spot inside the mouth, and a general skin rush initially appearing on the head and slowly spreading to other parts of the body [5]. Measles is a highly devastating infectious virus that means the infection can transmit directly from person to person through the coughing and sneezing of infected persons. It can even remain infectious in the air or on the surface for up to two hours, and if other people breathe this contaminated air or touch the surface, they must be infected [6].

There is no fixed medicine to recover the measles infected person. Patients with measles are suggested for bed rest, fluids, control of fever, and antibiotics [7]. The measles vaccine was first introduced in 1963. Since then, vaccination is the only fruitful way to control the measles epidemic, and about 73% of measles-related deaths were declined globally from 2000 to 2018 due to the vaccination [3]. According to the World Health Organization (WHO) recommendation, about 85% immunity is produced after the first dose of vaccine at the age of 9–11 months child. This percentage of immunity increases to 97% after the second dose of vaccine at greater than 12 months [8]. Despite the availability of this safe, effective and inexpensive vaccine, measles outbreaks have occurred in different parts of the world several times. In the USA, California faced a very worst situation of measles outbreak from 1988 to 1990 with 16,400 reported cases and 75 deaths [9]. In 2019, more than 1249 measles cases were reported in the USA, which was the largest number of cases since 1992 [10]. In the African region, Congo experienced its worst measles outbreak in 2019, with 250270 reported cases and 5110 deaths [11]. Some European and Eastern Mediterranean countries like Ukraine, Kazakhastan, Georgia, Yemen, Somalia and Sudan also faced a large measles outbreak in 2019 [11]. In 2018, a total of 50,000 people were infected, and about 300 people died in Madagascar; most of them were children under five years of age [12]. Globally, WHO estimated 97,69,400 confirmed measles cases with more than 1,40,000 deaths in 2018 and a total of 8,69,770 cases with 2,07,500 deaths in 2019 [13].

However, despite being vaccine-preventable, measles is still an issue of concern of public health department in many developing Asian and African countries due to low awareness, civil strife, vaccine hesitancy, and lower immunization system. Bangladesh, an overpopulated and poor economic Asian country, has experienced measles outbreaks in different areas between 2000 and 2019. The World Health Organization (WHO) estimated about 14,877 measles cases in 2005, 5,329 cases in 2011, and 1,793 cases in 2012 in Bangladesh [14]. To control and prevent the measles outbreak, the Bangladesh government took some initiatives like nationwide vaccination, additional supplementary immunization activities, and strengthening the case-based surveillance system in 2005, 2006, 2010 and 2014 [14]. The measles cases declined at 6 in 2005 and 250 in 2015 for the government adopted activities. However, it started to increase again from 2016. According to the estimation of WHO, in 2019, there were 4,181 measles cases in Bangladesh, with most of them were from the Rohingya refugee camp in Cox’s Bazaar [11]. A total of 1,724 measles cases were reported in 2017 and approximately 1,319 cases in 2018 [15]. Due to these increasing scenarios of measles cases, Bangladesh has still considered the measles affected country.

The concept of mathematical modeling is used to describe different real-world phenomena’s. The researchers have been using mathematical modeling in epidemiology since the middle of the 20th century to interpret the mechanism of spread and find ways of controlling and eliminating infectious diseases. Some renowned researchers have already done a few important studies on measles transmission dynamics deterministically using various essential compartments in recent decades. In Ochoche and Gweryina [16], a SIR deterministic compartmental model of measles was studied, highlighting the impact of vaccination. The authors realized that it is possible to eliminate measles through vaccination, and they advised that at least two doses of vaccine should be mandatory for all children. For controlling the transmission dynamics of measles, an optimal vaccine coverage level was investigated by Momoh et al. [17]. Edward et al. discussed a deterministic mathematical model to eradicate and control the measles pandemic [6]. They observed that the measles would be died out if the basic reproduction number is less than one, i.e. R0<1. In another study Fred, Sigey [18], the authors performed on an SEIR mathematical model with vaccination, and they suggested that the mass vaccination and the detection of measles cases as early as possible should be introduced to abet transmission.

Additionally, Christopher et al. studied a mathematical measles model with vaccination and measles drug therapy [19]. They found that the vaccination in susceptible class and drug therapy in exposed class to identified infected person eliminated measles more efficiently. In the study [20], another SEIR mathematical model also investigated to control the transmission dynamics of measles. Although they discussed stability, disease-free and endemic equilibriums, they did not address the impact of the vaccination in their study. In the abovementioned studies, all researchers have developed a deterministic mathematical measles model considering different compartments, including vaccination, to describe the transmission dynamics of measles. Nevertheless, no research has not been done so far focusing on the mathematical model of the mechanism of the spread of measles with double dose vaccination and different intervention scenarios for programmatic measles control.

In this study, we developed a measles model with a double dose of vaccination to describe the transmission dynamics of measles in Bangladesh. The model is calibrated to the Bangladesh demographic and measles incidence data from 2000 to 2019 to estimate the key transmission and progression parameters. Multiple intervention scenarios were considered to explore the impact of each on its own and when combined on measles incidence and mortality. We also performed cost-effective analysis to explore which intervention will be most cost-effective compare to others. This study depicts Bangladesh specific elimination strategies and describes the results of different levels of investment in future on measles control.

The entire paper is designed as follows: Section 2 introduces model development, basic reproduction number estimation, parameter estimation and sensitivity analysis. In Sections 3 and 4, we discussed the development of different scenarios and cost-effective strategy. Finally, section 5 contains discussion and conclusions.

2. Methods and materials

2.1 Model development

We developed a compartmental transmission dynamics measles model between the following mutually exclusive compartments: susceptible individuals, S(t); those who have not yet infected with the disease but might become infected; first dose vaccinated individuals, V1(t); those who have received the first dose of vaccine; second dose vaccinated individuals, V2(t); those who have received the second dose of vaccine; Exposed individuals, E(t); representing those that are infected and have not yet developed active measles disease; Infected individuals, I(t); those who are infected and infectious; and Recovered individuals, R(t); those who were previously infected and successfully recovered.

The total population size N(t) is assumed to be constant and well mixed:

N(t)=S(t)+V1(t)+V2(t)+E(t)+I(t)+R(t) (1)

To ensure the population size constant, we replace all deaths as newborns in the susceptible compartment. It includes death through natural causes, which occurs in all states at the constant per-capita rate μ, and measles-related deaths, which occur at the constant per-capita rate δ. Susceptible population (S) who receive the first dose of vaccine move to the vaccinated compartment at a rate η. The first dose of vaccinated population V1 moves to the susceptible compartment at a rate ρ, and the rest of the population moves to the second dose of vaccinated population V2 at a per-capita rate σ. The second dose of the vaccinated population also moves to the recovery compartment at a rate ω. Individuals in the S compartment may be infected with the measles virus at a rate λ = βSI, where β is the transmission rate between infected and susceptible population. Once infected, individuals move to the exposed compartment E. A proportion of the exposed population progress to the infected compartment at a per-capita rate α, and the rest of the exposed population progress to the recovered compartment at a per-capita rate κ due to the treatment of the exposed population. The proportion of the infected individuals move to the recovery compartment due to the treatment rate τ and natural recovery rate γ. The model flow diagram is presented in Fig 1.

Fig 1. Compartmental model of measles transmission in Bangladesh setting.

Fig 1

From the above-mentioned, the transmission dynamics of measles is given by the following compartmental system of nonlinear ordinary differential equations that describe the model:

dSdt=μNβSIηSμS+δI+ρV1 (2)
dV1dt=ηSρV1σV1μV1 (3)
dV2dt=σV1ωV2μV2 (4)
dEdt=βSIαEκEμE (5)
dIdt=αEγIδIτIμI (6)
dRdt=γI+ωV2+κE+τIμR (7)

The initial conditions of the system (2)–(7) are of the form

S(0)0,V1(0)0,V2(0)0,E(0)0,I(0)0,R(0)0. (8)

It can be easily shown that the solution of the system (2)–(7) subject to the initial conditions (8) exists and is nonnegative for all t≥0.

2.2 Basic reproduction number

The basic reproduction number can be determined using the method of next-generation matrix [21]. The next-generation matrix is the production of matrices T and −Σ−1 where the matrix T represents the rate of infection transmission in E and I compartments and the matrix Σ describes all other transfer across the compartments. The matrices T and Σ are given as

T=(0βS000)andΣ=((α+κ+μ)0α(γ+δ+τ+μ))

The next-generation matrix is

K=T×(Σ1)=(0βS000)×(1(α+κ+μ)0α(α+κ+μ)(γ+δ+τ+μ)1(γ+δ+τ+μ))=(βS0α(α+κ+μ)(γ+δ+τ+μ)βS0(γ+δ+τ+μ)00)

The basic reproduction number is the Eigen-value of largest magnitude of the next-generation matrix (K). Hence the basic reproduction number is obtained as

R0=βS0α(α+κ+μ)(γ+δ+τ+μ)=αβμN(ρ+σ+μ)(α+κ+μ)(γ+δ+τ+μ)((η+μ)(ρ+σ+μ)ρη)

2.3 Parameter estimation

We estimated the measles model parameters from fitting different combinations of parameters in Eqs (2)–(7) to the actual number of measles cases in Bangladesh from 2000 to 2019 [22]. In order to parameterize measles model (2)–(7), we obtained some of the parameter values from the literature (see Table 1), rest of the parameters were estimated from data fitting (see Fig 2). The estimation of parameters was carried out using the least-squares method, which minimises summation of the square errors given by ∑(A(t,y)−Bactual)2 subject to the measles model (2)–(7), where Bactual is the actual reported measles data, and A(t,y) denotes the solution of the model corresponding to the number of measles cases over time t with the set of estimated parameters, denoted by y.

Table 1. Depiction and estimation of the measles model (2)–(7) parameters.

Parameters
Description
Estimated References
value
N
μ
Total population in Bangladesh
Per-capita death rate
163,046,161 [23]
170 per year [24]
β Transmission rate 6.99×10−7 Fitted
η First dose of vaccination rate 0.94 [25]
ρ Progression rate from S to V1 0.6 [2]
σ Second dose of vaccination rate 0.93 [25]
ω Recovery rate due to the second dose of vaccine 0.8 [2]
α Progression rate from E to I 0.019 Fitted
δ Measles related death rate 0.125 [2]
γ Natural recovery rate 0.6 [2]
κ Treatment rate for exposed population 0.08 [26]
τ Treatment rate for infected population 0.14 [26]

Fig 2. Cumulative number of confirmed measles cases from 2000 to 2019 (red dot) and the corresponding model best fit (blue solid curve) in Bangladesh.

Fig 2

2.4 Sensitivity analysis

We perform the sensitivity of the model basic reproduction number (R0) to the model parameters using the Latin Hypercube Sampling (LHS) method with 10000 runs per simulation. The LHS is a Monte Carlo stratified sampling technique that permits us to concurrently achieve an unbiased assessment of the model output for a particular set of input parameter values. The Partial Rank Correlation Coefficients (PRCCs) for the full range of parameters are shown in Fig 3. The PRCCs for the basic reproduction number in Fig 3 is produced using the expressions R0. Results show that parameters transmission rate (β) and progression rate (α) have a positive correlation with the model outcomes R0, which means that decreasing these parameters values will reduce the prevalence of measles. On the other hand, parameters ρ, σ, γ, κ, τ and η have a negative correlation with the model outcomes R0, which indicates that increasing these parameters will decrease the outbreak of measles.

Fig 3. PRCC values depicting the sensitivity of the basic reproduction number R0 with respect to the parameters β, α, ρ, σ, γ, η, κ and τ.

Fig 3

2.5 Ethical approval

This study based on aggregated measles surveillance data in Bangladesh taken from the World Health Organization. No confidential information included because analyses were performed at the aggregate level. Therefore, no ethical approval is required.

3. Scenario development and analysis

This section developed four potential intervention scenarios to explore the dynamics of measles incidence and mortality in Bangladesh. These scenarios are detailed in Table 2, 3, 4 and 5. We parameterized these proposed responses to our model structure to assess the effect of these responses during the period 2020–2035. In 2014, Bangladesh, one of 11 countries in the South-East Asia Region, adopted a national goal for measles elimination by 2018. In Bangladesh the Ministry of Health achieved its objectives in first and second doses vaccines, effective treatment and overall management through partnership, engaging all care providers (GO-NGOs) and making available free vaccination support. Estimated coverage with the first dose vaccine increased from 74% in 2000 to 94% in 2016. The second dose vaccine was introduced in 2012, and its coverage increased from 35% in 2013 to 93% in 2016 [25]. In Bangladesh, treatment coverage for asymptomatic and symptomatic measles patients are around 8% and 14%, respectively [26]. Therefore, it is essential to increases the treatment rate for both asymptomatic and symptomatic measles patients in Bangladesh.

Table 2. Hypothetical single intervention strategy implemented in our proposed model of measles control in Bangladesh, for the period 2020–2035.

Parameters Parameter values Estimated measles actual incident cases Reduction from baseline Estimated measles actual mortality Reduction from baseline
First dose vaccine rate (η) Baseline (94%) 3.714×105 0.000×105 5.546×104 0.000×104
96% 3.686×105 0.028×105 5.507×104 0.039×104
98% 3.686×105 0.028×105 5.507×104 0.039×104
99% 3.686×105 0.028×105 5.507×104 0.039×104
100% 3.686×105 0.028×105 5.507×104 0.039×104
Second dose vaccine rate (σ) Baseline (93%) 3.714×105 0.000×105 5.546×104 0.000×104
95% 3.714×105 0.000×105 5.546×104 0.000×104
97% 3.714×105 0.000×105 5.546×104 0.000×104
99% 3.714×105 0.000×105 5.546×104 0.000×104
100% 3.714×105 0.000×105 5.546×104 0.000×104
Treatment rate for exposed population (κ) Baseline (8%) 3.714×105 0.000×105 5.546×104 0.000×104
25% 0.524×105 3.190×105 0.903×104 4.643×104
50% 0.031×105 3.683×105 0.677×103 5.478×104
75% 0.002×105 3.712×105 0.732×102 5.537×104
100% 0.003×104 3.7137×105 0.138×102 5.545×104
Treatment rate for infected population (τ) Baseline (14%) 3.714×105 0.000×105 5.546×104 0.000×104
25% 3.512×105 0.202×105 4.634×104 0.912×104
50% 3.150×105 0.564×105 3.306×104 2.240×104
75% 2.873×105 0.841×105 2.501×104 3.045×104
100% 2.656×105 1.058×105 1.977×104 3.569×104

Table 3. Hypothetical double intervention strategy implemented in our proposed model of measles control in Bangladesh, for the period 2020–2035.

Parameters Parameter values Estimated measles actual incident cases Reduction from baseline Estimated measles actual mortality Reduction from baseline
First dose (η) and second dose (σ) vaccine rates Baseline (94% & 93%) 3.714×105 0.000×105 5.546×104 0.000×104
96% and 95% 3.676×105 0.038×105 5.494×104 0.052×104
98% and 97% 3.666×105 0.048×105 5.481×104 0.065×104
99% and 99% 3.656×105 0.058×105 5.468×104 0.078×104
100% and 100% 3.652×105 0.062×105 5.462×104 0.084×104
First dose (η) and treatment rate for exposed population (κ) Baseline (94% & 8%) 3.714×105 0.000×105 5.546×104 0.000×104
96% and 25% 0.518×105 3.196×105 0.894×104 4.652×104
98% and 50% 0.030×105 3.684×105 0.694×103 5.476×104
99% and 75% 0.246×103 3.712×105 0.734×102 5.539×104
100% and 100% 0.348×102 3.714×105 0.139×102 5.545×104
First dose (η) and treatment rate for infected population (τ) Baseline (94% & 14%) 3.714×105 0.000×105 5.546×104 0.000×104
96% and 25% 3.484×105 0.230×105 4.599×104 0.947×104
98% and 50% 3.122×105 0.592×105 3.279×104 2.267×104
99% and 75% 2.848×105 0.866×105 2.483×104 3.063×104
100% and 100% 2.635×105 1.079×105 1.960×104 3.586×104
Second dose (σ) and treatment rate for exposed population (κ) Baseline (93% and 8%) 3.714×105 0.000×105 5.546×104 0.000×104
95% and 25% 0.524×105 3.190×105 0.903×104 4.643×104
97% and 50% 0.031×105 3.683×105 0.677×103 5.478×104
99% and 75% 0.244×103 3.712×105 0.732×102 5.539×104
100% and 100% 0.343×102 3.714×105 0.137×102 5.545×104
Second dose (σ) and treatment rate for infected population (τ) Baseline (93% and 14%) 3.714×105 0.000×105 5.546×104 0.000×104
95%and25% 3.502×105 0.212×105 4.622×104 1.924×104
97%and50% 3.131×105 0.583×105 3.288×104 2.258×104
99%and75% 2.848×105 0.866×105 2.479×104 3.067×104
100%and100% 2.628×105 1.086×105 1.957×104 3.589×104
Treatment rate for exposed population (κ) and treatment rate for infected population (τ) Baseline (8% and 14%) 3.714×105 0.000×105 5.546×104 0.000×104
25% and 25% 0.455×105 3.259×105 0.689×104 4.857×104
50% and 50% 0.013×105 3.701×105 0.188×103 5.527×104
75% and 75% 0.311×102 3.713×105 0.417×101 5.5455×104
100% and 100% 0.070×101 3.714×105 0.098×100 5.5459×104

Table 4. Hypothetical triple intervention strategy implemented in our proposed model of measles control in Bangladesh, for the period 2020–2035.

Parameters Parameter values Estimated measles actual incident cases Reduction from baseline Estimated measles actual mortality Reduction from baseline
η, σ and κ Baseline (94%, 93% & 8%) 3.714×105 0.000×105 5.546×104 0.000×104
96%, 95% & 25% 0.515×105 3.199×105 0.889×104 4.657×104
98%, 97% & 50% 0.029×105 3.685×105 0.661×103 5.479×104
99%, 99% & 75% 0.235×103 3.712×105 0.709×102 5.539×104
100%, 100% & 100% 0.329×102 3.714×105 0.133×102 5.535×104
η, σ and τ Baseline (94%, 93% & 14%) 3.714×105 0.000×105 5.546×104 0.000×104
96%, 95% & 25% 3.474×105 0.240×105 4.587×104 0.959×104
98%, 97% & 50% 3.104×105 0.610×105 3.261×104 2.285×104
99%, 99% & 75% 2.823×105 0.891×105 2.459×104 3.087×104
100%, 100% & 100% 2.605×105 1.109×105 1.941×104 3.605×104
η, τ and κ Baseline (94%, 14% & 8%) 3.714×105 0.000×105 5.546×104 0.000×104
96%, 25% & 25% 0.447×105 3.267×105 0.679×104 4.867×104
98%, 50% & 50% 0.013×105 3.701×105 0.183×103 5.527×104
99%, 75% & 75% 0.305×102 3.7136×105 0.404×101 5.5455×104
100%, 100% & 100% 0.068×101 3.7139×105 0.095×100 5.5459×104
σ, τ and κ Baseline (93%, 14% & 8%) 3.714×105 0.000×105 5.546×104 0.000×104
95%, 25% & 25% 0.452×105 3.262×105 0.686×104 4.860×104
97%, 50% & 50% 0.013×105 3.701×105 0.186×103 5.527×104
99%, 75% & 75% 0.303×102 3.7136×105 0.406×101 5.5455×104
100%, 100% & 100% 0.068×101 3.7139×105 0.095×100 5.5459×104

Table 5. Selecting best scenarios in our proposed model of measles control in Bangladesh, for the period 2020–2035.

Parameters Parameter values Estimated measles actual incident cases Reduction from baseline Estimated measles actual mortality Reduction from baseline
η, σ, κ and τ Baseline (94%, 93%,
8% & 14%)
3.714×105 0.000×105 5.546×104 0.000×104
96%, 95%,
25% & 25%
0.444×105 3.270×105 0.675×104 4.871×104
98%, 97%,
50% & 50%
0.012×105 3.702×105 0.180×103 5.528×104
99%, 99%,
75% & 75%
0.297×102 3.7137×105 0.393×101 5.5456×104
100%, 100%,
100% & 100%
0.065×101 3.7139×105 0.092×100 5.5459×104
η, τ and κ Baseline (94%, 14% & 8%) 3.714×105 0.000×105 5.546×104 0.000×104
96%, 25% & 25% 0.447×105 3.267×105 0.679×104 4.867×104
98%, 50% & 50% 0.013×105 3.701×105 0.183×103 5.527×104
99%, 75% & 75% 0.305×102 3.7136×105 0.404×101 5.5455×104
100%, 100% & 100% 0.068×101 3.7139×105 0.095×100 5.5459×104
τ and κ Baseline (8% and 14%) 3.714×105 0.000×105 5.546×104 0.000×104
25% and 25% 0.455×105 3.259×105 0.689×104 4.857×104
50% and 50% 0.013×105 3.701×105 0.188×103 5.527×104
75% and 75% 0.311×102 3.713×105 0.417×101 5.5455×104
100% and 100% 0.070×101 3.714×105 0.098×100 5.5459×104
Treatment rate for exposed population (κ) Baseline (8%) 3.714×105 0.000×105 5.546×104 0.000×104
25% 0.524×105 3.190×105 0.903×104 4.643×104
50% 0.031×105 3.683×105 0.677×103 5.478×104
75% 0.002×105 3.712×105 0.732×102 5.537×104
100% 0.003×104 3.7137×105 0.138×102 5.545×104

Scenario 1 simulates a continuation of the programmatic situation during the period 2020–2035. During this time, we incorporated four different intervention strategies: increasing both first and second dose vaccine; improving treatment rates for exposed (asymptomatic) and infected (symptomatic) population. We implement these as single interventions and compare them with baseline (see Table 2) to explore the impact of each intervention on total measles incidence and mortality. In this scenario, the first and second dose vaccine increase from 94% and 93% to 100% and 100%, respectively. Further, treatment rates for asymptomatic and symptomatic cases improved through a combination of case-finding strategies and improved knowledge of standard operating procedures for measles treatment commencement. The case finding is to identify of symptomatic patients attending a health facility, either their initiative or referred by another health facility, health worker, and community volunteer. These strategies improve the treatment rate for an asymptomatic case from around 8% to 100% and symptomatic cases from around 14% to 100%.

Scenario 2 consists of a combination of six-double intervention strategies, which include (i) enhanced first dose and second dose vaccine, (ii) enhanced the first dose vaccine and treatment rate for exposed population, (iii) enhanced first dose vaccine and treatment rate for infected population, (iv) improved second dose vaccine and treatment rate for an exposed population, (v) improved second dose vaccine and treatment rate for an infected population, and (vi) enhanced treatment rate for exposed and infected population.

Scenario 3 incorporates a combination of four-triple intervention strategies such as (i) first and second dose vaccine as well as treatment rate for an exposed population, (ii) first and second dose vaccine as well as treatment rate for an infected population, (iii) first dose vaccine, treatment rate for an exposed and infected population, (iv) second dose vaccine, treatment rate for exposed and infected population. Finally, scenario 4 describes the broad scale-up combination of first and second dose vaccines and the treatment rate for exposed and infected populations. Under this scenario, all model parameters values changed simultaneously and considered overall scale-up values for each parameter. However, each category of intervention could involve several potential specific activities. For example, treatment for exposed and infected populations could include training of doctors, nurses, and pharmacists on measles guidelines, monitoring and managing supplies of high-quality drugs. We assumed that these different activities would have a similar impact on the model and did not model the impact of these explicit activities independently.

The estimated outcomes in this study, over a 15-year time frame, included: first dose and second dose vaccine, treatment for exposed and infected population. To better understand the contribution of changing specific interventions with different scenarios, estimated outcomes were presented separately for each intervention assumed to be influenced by the scenario. Results from scenario one are presented in Figs 4 and 5 as well as Table 2. From scenario 1, we observed that within a four-single intervention strategy, the treatment rate for the exposed population is the most effective than other single interventions, which reduces more measles incidence and mortality (see Figs 4(A3) and 5(B3), and Table 2) in Bangladesh. Hence, it is the preferable single intervention strategy. Alternatively, the treatment rate for the infected population is another option.

Fig 4. Impact of the four single intervention strategies on annual incidence of measles: (A1) varying first dose vaccination, (A2) varying second dose vaccination, (A3) varying treatment rate for exposed population, and (A4) varying treatment rate for infected population.

Fig 4

Fig 5. Impact of the four single intervention strategies on annual mortality of measles: (B1) varying first dose vaccination, (B2) varying second dose vaccination, (B3) varying treatment rate for exposed population, and (B4) varying treatment rate for infected population.

Fig 5

Figs 6 and 7, Table 3, represent scenario 2, which includes our proposed double interventions strategies. Each of the interventions resulted in decreasing the number of measles incidence and mortality. The analysis shows that a combination treatment rates of the exposed and infected population are the best dual intervention strategy for reducing the number of measles incidence and mortality in Bangladesh (see Figs 6(A6) and 7(B6), and Table 3). Alternative, the combination of first dose vaccination rate and treatment rate for an exposed population is another option.

Fig 6. Impact of the six-double intervention strategies on annual incidence of measles: (A1) η and σ, (A2) η and κ, (A3) η and τ, (A4) σ and κ, (A5) σ and τ, and (A6) κ and τ.

Fig 6

Fig 7. Impact of the six-double intervention strategies on annual mortality of measles: (B1) η and σ, (B2) η and κ, (B3) η and τ, (B4) σ and κ, (B5) σ and τ, and (B6) κ and τ.

Fig 7

Figs 8 and 9 and Table 4 depict scenario 3, which include a combination of triple interventions strategies. As expected, each of the strategies decreased the number of measles incidence and mortality in Bangladesh. The combination of first dose vaccination rate, treatment rates for the exposed and infected population is the best triple intervention strategy (see Figs 8(A3) and 9(B3), and Table 4). Alternative, second dose vaccination rate, and treatment rates for exposed and infected populations are also better triple intervention strategies.

Fig 8. Impact of the four-triple intervention strategies on annual incidence of measles: (A1) η, σ and κ, (A2) η, σ and τ, (A3) η, τ and κ, and (A4) σ, τ and κ.

Fig 8

Fig 9. Impact of the four-triple intervention strategies on annual mortality of measles: (B1) η, σ and κ, (B2) η, σ and τ, (B3) η, τ and κ, and (B4) σ, τ and κ.

Fig 9

Finally, Fig 10 and Table 5 represents scenario 4, which includes first and second dose vaccination rates and treatment rates for exposed and infected populations. Under scenario 4, measles incidence and mortality reduce enormously over the 15-years due to the combination of immensely expanding first and second dose vaccination rates and treatment rates for exposed and infected populations. We also have compared all the scenarios to know which is the most effective (see Table 5). Our finding suggests that within the best scenarios analysis, scenario 4 is the most effective, which reduce the massive number of measles incidence and mortality in Bangladesh. However, depending on the availability of fund, other scenario in Table 5 can be considered.

Fig 10.

Fig 10

Impact of the quadrapled intervention strategies on annual (A) incidence and (B) mortality of measles.

4. Optimal control strategy and cost-effective analysis

In this section, we performed optimal control strategy and implemented three time dependent control variables to explore their effectiveness and cost-effective analysis in controlling the spread of measles in the population of Bangladesh. The time dependent control variables u1(t), u2(2) and u3(t) are defined as follows:

  1. u1(t) denotes the distancing control strategy that is the effort at inhibiting the virus transmission from Exposed and infected population. This can be reached through public health advocacy for social distancing, good personal hygiene, diagnosis campaigns, and education programs for public health. Noting that u1(t) = 1 indicates the policy effectively protects against infection, while u1(t) = 0 denotes strategy failure.

  2. u2(t) represents the vaccination control strategy, it is assumed that the number of vaccines available during this time period and they are all administrated and used completely. If u2(t) = 1, then the control strategy is effectively used, while u2(t) = 0 means the absence of the control strategy.

  3. u3(t) indicates control variable to enhance the treatment of infected population with a view to ensure the rapid provision of additional treatment includes providing comfort measures to relieve symptoms and preventing complications. Perceiving u3(t) = 1, then the control strategy is effectively treating the disease, while u3(t) = 0 means the strategy failure.

Subsequently, the optimal control model with the three above-mentioned time-dependent variables is given by the following non-linear differential equations:

dSdt=μN(1u1(t))βSIηSμS+δI+ρV1
dV1dt=ηSρV1σ(1+u2(t))V1μV1
dV2dt=σ(1+u2(t))V1ω(1+u2(t))V2μV2
dEdt=(1u1(t))βSIαEκ(1+u3(t))EμE (9)
dIdt=αEγIδIτIμI
dRdt=γI+ω(1+u2(t))V2+κ(1+u3(t))E+τIμR

The goal of presenting the three control variables is to seek the optimal solution required to minimise the numbers of Exposure and infected individuals at minimum cost. Hence, the objective function for this optimal control problem is given by

J(u1*,u2*,u3*)=min0u1,u2,u31T0Tf(A1E+A2I+12(B1u12(t)+B2u22(t)+B3u32(t)))dt, (10)

where, constants Ai, i = 1,2 are positive weights essential to balance the objective function. Following other works on infectious diseases control problem [2730], quadratic cost on the controls are chosen to ensure the control has only one extremum (i.e. maximum or minimum), where 12B1u12(t) is the total cost of executing the distancing, and 12B2u22(t) is the total cost of vaccination and 12B3u32(t) is the total cost of treatment for infected individuals over the time interval [T0, Tf] (where initial time T0 = 0, final time Tf = 15 years period).

Precisely, the optimal control strategy u*=(u1*,u2*,u3*) is required such that

J(u1*,u2*,u3*)=min{J(u1,u2,u3):u1,u2,u3U}, (11)

where, U is the non-empty control set defined by

U={(u1,u2,u3):(u1(t),u2(t),u3(t))aremeasurablewith0u1,u2,u31fort[T0,Tf]}.

.

Thus, to regulate the necessary conditions that the optimal control strategy (u1*,u2*,u3*) must satisfy, Pontryagin’s maximum principle [31], which changes into the control problem (11) subject to the model (9) that minimising pointwise a Hamiltonian H1, with respect to the control measures. This Hamiltonian is given as

H1=A1E+A2I+12(B1u12(t)+B2u22(t)+B3u32(t))
+λ1(μN(1u1(t))βSIηSμS+δI+ρV1)
+λ2(ηSρV1σ(1+u2(t))V1μV1)
+λ3(σ(1+u2(t))V1ω(1+u2(t))V2μV2)
+λ4((1u1(t))βSIαEκ(1+u3(t))EμE)
+λ5(αEγIδIτIμI)
+λ6(γI+ω(1+u2(t))V2+κ(1+u3(t))E+τIμR), (12)

where, λi, i = 1,2,3,…,6, represent the adjoint variables associated with the state variables of the model (9). The expected outcome for minimising control problem as performed in [30,32] is adapted below. Now using Pontryagin’s maximum principle, we obtain the following theorem.

Theorem: Given that (u1*,u2*,u3*) minimises the objective function (10) subject to the corresponding system (9), then the adjoint variables λi, i = 1,2,3,…,6, satisfy the following system

dλ1dt=(λ1λ4)(1u1)βI+(λ1λ2)η+λ1μ
dλ2dt=(λ2λ1)ρ+(λ2λ3)σ(1+u2)+λ2μ
dλ3dt=(λ3λ6)ω(1+u2)+λ3μ
dλ4dt=A1+(λ4λ5)α+(λ4λ6)κ(1+u3)+λ4μ
dλ5dt=A2+(λ1λ4)βS+(λ5λ1)δ+(λ5λ6)(γ+τ(1+u3))+λ5μ
dλ6dt=λ6μ (13)

with the terminal (transversality) conditions

λi(Tf)=0,i=1,2,3,,6. (14)

Further, the optimal control pair (u1*,u2*,u3*) is given as follows

u1*=max{0,min{1,βSI(λ4λ1)B1}},
u2*=max{0,min{1,(λ2λ3)κE+(λ3λ6)τIB2}}
u3*=max{0,min{1,(λ5λ6)τIB3}} (15)

Proof: The existence of the optimal controls u1*,u2* and u3* such that

J(u1*(t),u2*(t),u3*(t))=UminJ(u1,u2,u3) with state system (9) is given by the convexity of the objective function integrand. By Pontryagin’s Maximum Principle [31], the adjoint equations and transversality conditions are obtained. Differentiation of Hamiltonian H1 for the state variables gives the following system,

dλ1dt=H1S,
dλ2dt=H1V1,
dλ3dt=H1V2,
dλ4dt=H1E,
dλ5dt=H1I,
dλ6dt=H1R,

with λi = 0, for i = 1,2,3,…,6.

Optimal controls u1*(t),u2*(t) and u3*(t) are derived by the following optimality conditions,

H1u1=B1u1+λ1βSIλ4βSI=0,
H1u2=B2u2λ2σV1+λ3σV1λ3ωV2+λ6ωV2=0,
H1u3=B3u3λ5τI+λ6τI=0

at u1*(t),u2*(t) and u3*(t) on the set U. On this set

u1*(t)=βSI(λ4λ1)B1,
u2*(t)=(λ2λ3)κE+(λ5λ6)τIB2.
u3*(t)=(λ5λ6)τIB3

This ends of the proof.

Here, we implemented Runge-Kutta fourth-order forward and backward method using MATLAB programming language to solve the subsequent optimality system which consists of (9) and (13) with the characterization (15) within the period of [0, 15] years. The weight constants adopted for balancing the objective function (10) are selected to ensure that no term dominates the other. Therefore, we used equal weight constant for minimising the infectious classes, so that A1 = A2 = 1. Under other conditions, the weight constants for determining efforts or cost essential to implement the controls are comparatively different, and outcomes in values for B1 = 50, B2 = 100 and B3 = 150 are consistent with previous modelling research. [33]. Details of the numerical procedure for simulating the obtained optimality system are contained [34].

Figs 11 and 12 establish how distancing control, u1(t) and vaccination control strategies, u2(t) affect the spread of the measles in Bangladesh. As shown in Figs 11 and 12, to minimise the objective function (10), the optimal control u1(t) and u2(t) are continued at the maximum level (i.e. 100%) for about 8 years and 5 years respectively for Bangladesh population before relaxing to the minimum in the final time. Also as expected, the number of measles infectious individuals are reduced when control is in place. On the other hand, Fig 13 displays the effects of treatment control strategy u3(t) on the dynamics of measles infection in Bangladesh. We observed that treatment control strategy has small impact on exposed and infected population while distancing control strategy has high impact for reducing the burden of measles cases.

Fig 11. Control profile u1(t) and its effects on the measles cases in Bangladesh.

Fig 11

Fig 12. Control profile u2(t) and its effects on the measles cases in Bangladesh.

Fig 12

Fig 13. Control profile u3(t) and its effects on the measles cases in Bangladesh.

Fig 13

Fig 14 shows the implication of combining the three optimal controls in bringing down the total number of infectious human to zero in Bangladesh. It is observed that optimal solution has achieved when distancing control strategy (u1) is strictly followed to at the maximum level of 100% for 7 years, while the vaccination and treatment control strategies (u2, u3) are at a maximum level above 60% and 20% respectively. It can be seen that the combination of the three control strategies is significantly more effective to decrease the spread of the measles compare to implement each control strategy individually, which is consistent with the previous modelling studies [30,35,36].

Fig 14. Control profile u1, u2 & u3(t) and its effects on the measles cases in Bangladesh.

Fig 14

It is crucial to identify the most cost-effective strategy among distancing, vaccination and treatment control as well as their combination control strategies to optimally mitigate the spread of measles at the possible minimum cost. This is performed by associating the differences among each intervention’s costs and outcomes; obtained by estimating the incremental cost-effective ratio (ICER), which is defined as the extra cost per additional intervention outcome. Incrementally, when analysing two or more competing intervention policies, one intervention is associated with the next less effective option. The ICER numerator is given by the total difference in intervention costs, active measles cases averted costs and averted productivity losses if applicable, between each scenario and baseline. The ICER denominator is the difference in total number of active measles cases averted. Hence, the following formula obtains the ICER:

ICER=DifferenceintotalcostsbetweencontrolstrategiesDifferenceintotalnumberofactivecasesavertedbycontrolstrategies, (16)

We also performed the average cost-effectiveness ratio (ACER), which estimates the effectiveness of a particular intervention technique. The ACER is the ratio between the total cost incurred and the total number of active measles cases averted by that strategy. This is calculated by

ACER=TotalcostTotalactivecasesaverted (17)

The total cost for each of distancing, vaccination and treatment implementation and mutual effort of the optimal control strategy is obtainable from the objective function (10). The cases averted is invaded by computing the difference between infectious individuals with and without control strategy. Let, P1, P2, P3 and P123 respectively represent single distancing control strategy u1(t), single vaccination control strategy u2(t), single treatment control strategy u3(t) and the combined effort of the three strategies. Table 6 summarises the ICER and ACER for each and the combination of the control variables u1(t), u2(t) and u3(t) in increasing order of the total infection averted. The ICER and ACER results for P1, P2, P3 and P123 are calculated using (16) and shown in Table 6 follows.

Table 6. ICER and ACER in the order of measles cases averted by control measures.

Control measures Total infected averted Total cost ICER ACER
P 1 4.6920×106 7.0203×105 0.1496 0.1496
P 2 6.5486×105 1.5916×106 −0.2203 2.4304
P 3 4.4332×105 2.1402×106 −2.5934 4.8276
P 123 3.2905×108 6.6474×105 −0.0045 0.0020

Comparing P1, P2, P3 and P123 in Table 6 and Fig 15, it is seen that combined control strategy P123 is most cost-effective which reduce a significant number of measles cases with low cost compared to P1, P2 and P3 individually, while P3 is the least cost-effective intervention strategy among them.

Fig 15. Comparing cost-effective analysis among P1, P2, P3 and P123 control strategies.

Fig 15

5. Discussion and conclusion

Bangladesh is a resource-poor, high burden measles country compared to other South-East Asian countries, and the transmission dynamics and epidemiology of measles are poorly understood. Therefore, due to paying less attention to the spread of measles, Bangladesh has been suffering from measles for many years even though measles is a vaccine-preventable disease with adequate and timely vaccination [37]. Indeed, ensuring vaccines for all people is a high burden and expensive for Bangladesh, as in other South Asian countries, but still the collected vaccines are not administered properly and therefore a considerable number of vaccines are wasted [38]. Even at the beginning of the last decade, more than half (about 69.7%) of measles vaccines distributed at both ward and village levels almost in all districts were wasted due to improper distribution planning or supply process and lack of proper maintenance [39]. Owing to these problems, the measles vaccination rate was comparatively low than that of other diseases vaccinations [40]. However, subsequently, the Bangladesh government set a target of achieving more than 95% measles vaccination coverage by 2018 to eliminate measles [41].

Finally, following WHO measles elimination strategies, Bangladesh has achieved around 93% coverage with second vaccine doses in every district and delivered through the routine immunization program and financial support from the treatment program and programmatic strength [25]. Although measles control in Bangladesh has significantly progressed–improved first and second doses of vaccine, availability of free treatment services, involvement of multiple partners, newer diagnostic facilities, sufficient human resources, adequate capacity and guidelines–more efforts are required.

In this paper, we presented a measles model with first and second dose vaccine to explore the transmission dynamics of measles in Bangladesh. We derived the basic reproduction number of the measles model and found that basic reproduction numbers play an essential role in the dynamics of measles outbreaks. We fitted measles incidence data with the model from the WHO report to estimate the model parameters. Sensitivity analyses were performed to determine the relative importance of several parameters used in our model. It will help epidemiologists and public health officials focus on the more significant parameters for formulating the measles control strategy. Our analysis led to the observations that transmission rate significantly contributes to the basic reproduction numbers of measles dynamics and needs to be calculated precisely for an accurate outcome.

We acknowledged the importance of comprehensive countrywide programmatic improvements to measles control in Bangladesh. Without such extensive approaches, further rises in the overall disease burden are expected. Four different scenarios were considered (scenario 1, scenario 2, scenario 3 and scenario 4) from combinations of first and second dose vaccines and treatment for exposed and infected populations. Numerous settings were examined to measure the effectiveness of the scenario strategies. In scenario 1, within the four single-intervention strategies, the treatment for the exposed population is the most effective intervention compared to other single-intervention strategies. The result shows that if extensive programmatic development does not occur, especially with the expansion of treatment rate for the exposed population, it is likely that measles will remain uncontrolled in Bangladesh. However, the first and second dose vaccination rates already have covered about 94% and 93%, respectively, in Bangladesh. Therefore, increasing the treatment rate for exposed populations is the better option for controlling measles outbreaks.

Within the six dual-intervention strategies (scenario 2) with treatment for exposed and infected populations is the most effective intervention strategy that reduces the number of incidence and mortality in Bangladesh. Alternatively, activities that aim to improve the first dose of vaccine and exposed or infected population treatment rate are other effective options. However, when we scaled up the treatment rate for the exposed and infected population under scenario 2, the reduction in measles incidence and mortality achieved. Therefore, our outcomes suggest that an improved treatment rate for the exposed and infected population would be insufficient to reduce measles incidence and mortality.

Considering the four-triple intervention strategies (scenario 3), improving the treatment rate for exposed and infected populations with the first dose of vaccination rate is the most effective at measles incidence and mortality reduction compared to other triple intervention strategies. From the analysis of all the scenarios, we found that scenario 4 (first and second dose vaccination rate and treatment rate for exposed and infected population) is the most effective intervention strategy and followed by scenario 3 (first dose vaccination rate and treatment rate for exposed and infected population), scenario 2 (treatment rate for exposed and infected population), and scenario 1 (treatment rate for exposed population). Our findings suggest that the treatment rate for the exposed population is the most critical intervention for decreasing measles incidence and mortality in Bangladesh. However, focus on the first dose and second dose of vaccination rate or treatment rate for the infected population alone will not dramatically affect the decline in measles incidence and mortality in Bangladesh. Taking two or more key interventions simultaneously is the most effective way to reduce measles incidence and mortality in Bangladesh.

Scenarios analysis has been applied in different low and middle income endemic countries to control infectious diseases (e.g. measles, tuberculosis, COVID-19) epidemic [4245]. Previous studies show that focus on a single intervention strategy will not dramatically affect the decline in infectious disease outbreak but combined two or more interventions is the most effective for reducing the burden of infectious diseases [43,46], which is found to be consistent with our results.Our scenarios describe a variety of potential responses, extending from inaction to extremely ambitious multifactorial strategies. Despite the challenges of delivering effective programmatic measles control in Bangladesh, we believe it is essential to consider such responses. It is because significant impacts from simple public health interventions have previously been demonstrated in resource-limited settings such as Bangladesh. However, the World Health Organization does not presently recommend comprehensive approaches. Our modelling suggests that the high burden of measles incidence and mortality in Bangladesh is likely to increase with the existing programmatic intervention strategy.

We also implemented an optimal control approach via Pontryagin’s Maximal principle [31] and formulated the optimal strategies for controlling the measles epidemic in Bangladesh. Three different control strategies were considered including distancing control strategy (u1), vaccination control strategy (u2) and treatment control strategy (u3). Different settings were examined to measure the cost-effectiveness of the control strategies. Between the three-single control strategies, the distancing control strategy (u1) is better in cost-effectiveness than the vaccination and treatment control strategies which reduce a significant number of measles cases in Bangladesh. Therefore, our results suggest that the Bangladesh government should improve distancing control interventions when only one control strategy is used. Naturally, this strategy actively decreases and/or stops the contact between susceptible and infectious individuals of measles. However, combined implementation of distancing, vaccination and treatment strategies is the most cost-effective measure for reducing the burden of measles in Bangladesh.

Optimal control strategies have been applied in other endemic settings to minimise infectious diseases (e.g. measles, tuberculosis, COVID-19) cases and intervention implementation costs. Previous studies show that distancing strategy is the best strategy for the single control strategy implementation to decrease disease burden and intervention costs [33,42,47], which is similar to our results. However, our finding also suggests that combining three control strategy is the most effective way to decrease the measles burden of Bangladesh, consistent with previous works [33,48,49].

In Bangladesh, infectious disease surveillance is not fully recognised and the risk of bias cannot be prohibited. More precise data should be put in place to address alarms related to measles. Precise data leads to better estimation of vital parameters, and this means our projected intervention to decision support is data-dependent. Hence, local and national level policy-makers need to adjust the possibility of under-reporting bias when investigating our results.

Supporting information

S1 Data

(XLSX)

Data Availability

All data are fully available within the paper and Supporting Information files.

Funding Statement

This work was not funded and did not receive any specific grant from funding agencies in the public, commercial, or not-for profit sectors.

References

  • 1.Moss W.J. and Griffin D.E., Global measles elimination. Nature Reviews Microbiology, 2006. 4(12): p. 900–908. doi: 10.1038/nrmicro1550 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Tilahun G.T., Demie S., and Eyob A., Stochastic model of measles transmission dynamics with double dose vaccination. Infectious Disease Modelling, 2020. 5: p. 478–494. doi: 10.1016/j.idm.2020.06.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Memon Z., Qureshi S., and Memon B.R., Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan. The European Physical Journal Plus, 2020. 135(4): p. 378. doi: 10.1140/epjp/s13360-020-00392-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Perry R.T. and Halsey N.A., The clinical significance of measles: a review. The Journal of infectious diseases, 2004. 189(Supplement_1): p. S4–S16. doi: 10.1086/377712 [DOI] [PubMed] [Google Scholar]
  • 5.Sankalé M. and Mazer A., Guide de médecine en Afrique et Océan Indien. 1988: Edicef. [Google Scholar]
  • 6.Edward S., et al., A mathematical model for control and elimination of the transmission dynamics of measles. Applied and Computational Mathematics, 2015. 4(6): p. 396–408. [Google Scholar]
  • 7.Control C. f.D. and Prevention, Progress in global measles control, 2000–2010. MMWR. Morbidity and mortality weekly report, 2012. 61(4): p. 73–78. [PubMed] [Google Scholar]
  • 8.Organization W.H., Status report on progress towards measles and rubella elimination. 2013, SAGE working group on measles and rubella. [Google Scholar]
  • 9.Dales L., et al., Measles epidemic from failure to immunize. Western journal of medicine, 1993. 159(4): p. 455. [PMC free article] [PubMed] [Google Scholar]
  • 10.Patel M., et al., National update on measles cases and outbreaks—United States, January 1–October 1, 2019. Morbidity and Mortality Weekly Report, 2019. 68(40): p. 893. doi: 10.15585/mmwr.mm6840e2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Rana M.S., et al., Impact of COVID-19 pandemic on Measles surveillance in Pakistan. The Journal of Infection, 2020. doi: 10.1016/j.jinf.2020.10.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ahmed N., et al., Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019. 29(10): p. 103101. doi: 10.1063/1.5116807 [DOI] [PubMed] [Google Scholar]
  • 13.Organization W.H., More than 140,000 die from measles as cases surge worldwide. Доступно на: https://www.who.int/news-room/detail/05-12-2019-more-than-140-000-die-from-measles-as-cases-surge-worldwide (дата обращения 30.01. 2020), 2020. [Google Scholar]
  • 14.Sultana S., Elimination of measles from Bangladesh: Progression and Challenges ahead. J Microbiol Experimentation, 2017. 5(7): p. 00174. [Google Scholar]
  • 15.Reliefweb, Bangladesh: Measles Outbreak—2017–2018. 2018. [Google Scholar]
  • 16.Ochoche J. and Gweryina R., A mathematical model of measles with vaccination and two phases of infectiousness. IOSR Journal of Mathematics, 2014. 10(1): p. 95–105. [Google Scholar]
  • 17.Momoh A., et al., Modelling the effect of vaccination on the transmission dynamics of measles. International Journal of Pure and Applied Mathematics, 2013. 88(3): p. 381–390. [Google Scholar]
  • 18.Fred M.O., et al., Mathematical modeling on the control of measles by vaccination: case study of KISII County, Kenya. The SIJ Transactions on Computer Science Engineering and Its Applications (CSEA), 2014. 2(4): p. 38–46. [Google Scholar]
  • 19.Obumneke C., Adamu I.I., and Ado S.T., Mathematical model for the dynamics of measles under the combined effect of vaccination and measles therapy. International Journal of Science and Technology, 2017. 6(6): p. 862–874. [Google Scholar]
  • 20.Bakare E., Adekunle Y., and Kadiri K., Modelling and Simulation of the Dynamics of the Transmission of Measles. International Jounal of Computer Trends and Technology, 2012. 3: p. 174–178. [Google Scholar]
  • 21.Diekmann O., Heesterbeek J., and Roberts M.G., The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 2010. 7(47): p. 873–885. doi: 10.1098/rsif.2009.0386 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.WHO, Measles: number of reproted cases in Bangladesh. 2020. [Google Scholar]
  • 23.Economy C., Bangladesh population in 2019. Accessed on https://countryeconomy.com/demography/population/bangladesh, 2020. [Google Scholar]
  • 24.Yang Y., et al., Global stability of two models with incomplete treatment for tuberculosis. Chaos, Solitons & Fractals, 2010. 43(1–12): p. 79–85. [Google Scholar]
  • 25.Khanal S., et al., Progress toward measles elimination—Bangladesh, 2000–2016. MMWR. Morbidity and mortality weekly report, 2017. 66(28): p. 753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Bakhtiar T., Control Policy Mix in Measles Transmission Dynamics Using Vaccination, Therapy, and Treatment. International Journal of Mathematics and Mathematical Sciences, 2020. 2020. [Google Scholar]
  • 27.Asamoah J.K.K., et al., Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana. Chaos, Solitons & Fractals, 2020. 140: p. 110103. doi: 10.1016/j.chaos.2020.110103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ullah S. and Khan M.A., Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study. Chaos, Solitons & Fractals, 2020. 139: p. 110075. doi: 10.1016/j.chaos.2020.110075 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Srivastav A., et al., Modeling and Optimal Control Analysis of COVID-19: Case Studies from Italy and Spain. Authorea Preprints, 2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kuddus M.A., et al., Modeling drug-resistant tuberculosis amplification rates and intervention strategies in Bangladesh. PloS one, 2020. 15(7): p. e0236112. doi: 10.1371/journal.pone.0236112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Pontryagin L.S., Mathematical theory of optimal processes. 2018: Routledge. [Google Scholar]
  • 32.Olaniyi S., et al., Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis. Journal of Biological Dynamics, 2020. 14(1): p. 90–115. doi: 10.1080/17513758.2020.1722265 [DOI] [PubMed] [Google Scholar]
  • 33.Olaniyi S., et al., Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics. The European Physical Journal Plus, 2020. 135(11): p. 1–20. doi: 10.1140/epjp/s13360-020-00954-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Lenhart S. and Workman J.T., Optimal control applied to biological models. 2007: CRC press. [Google Scholar]
  • 35.Chu Y.-M., et al., Mathematical modeling and stability analysis of Buruli ulcer in Possum mammals. Results in Physics, 2021: p. 104471. [Google Scholar]
  • 36.Alzahrani E.O., et al., Optimal control strategies of Zika virus model with mutant. Communications in Nonlinear Science and Numerical Simulation, 2021. 93: p. 105532. [Google Scholar]
  • 37.Sheikh N., et al., Coverage, timelines, and determinants of incomplete immunization in Bangladesh. Tropical medicine and infectious disease, 2018. 3(3): p. 72. doi: 10.3390/tropicalmed3030072 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.de Broucker G., et al., The economic burden of measles in children under five in Bangladesh. BMC health services research, 2020. 20(1): p. 1–9. doi: 10.1186/s12913-020-05880-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Guichard S., et al., Vaccine wastage in Bangladesh. Vaccine, 2010. 28(3): p. 858–863. doi: 10.1016/j.vaccine.2009.08.035 [DOI] [PubMed] [Google Scholar]
  • 40.Organization W.H., Trend and factors affecting zero-vaccination status of children for measles-containing vaccine in India: Analysis from two recent demographic and health surveys. 2021. [Google Scholar]
  • 41.Boulton M.L., et al., Socioeconomic factors associated with full childhood vaccination in Bangladesh, 2014. International Journal of Infectious Diseases, 2018. 69: p. 35–40. doi: 10.1016/j.ijid.2018.01.035 [DOI] [PubMed] [Google Scholar]
  • 42.Rahmayani S.A., Aldila D., and Handari B.D., Cost-effectiveness analysis on measles transmission with vaccination and treatment intervention. AIMS Mathematics, 2021. 6(11): p. 12491–12527. [Google Scholar]
  • 43.Kuddus M.A., et al., Scenario analysis for programmatic tuberculosis control in Bangladesh: a mathematical modelling study. Scientific reports, 2021. 11(1): p. 1–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Cutts F., et al., Using models to shape measles control and elimination strategies in low-and middle-income countries: a review of recent applications. Vaccine, 2020. 38(5): p. 979–992. doi: 10.1016/j.vaccine.2019.11.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Rahman A. and Kuddus M.A., Modelling the transmission dynamics of COVID-19 in six high-burden countries. BioMed Research International, 2021. 2021. doi: 10.1155/2021/5089184 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kim S., et al., What does a mathematical model tell about the impact of reinfection in Korean tuberculosis infection? Osong public health and research perspectives, 2014. 5(1): p. 40–45. doi: 10.1016/j.phrp.2014.01.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Madubueze C.E., Sambo D., and Onwubuya I.O., Controlling the Spread of COVID-19: Optimal Control Analysis. medRxiv, 2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Lemecha Obsu L. and Feyissa Balcha S., Optimal control strategies for the transmission risk of COVID-19. Journal of biological dynamics, 2020. 14(1): p. 590–607. doi: 10.1080/17513758.2020.1788182 [DOI] [PubMed] [Google Scholar]
  • 49.Alemneh H.T. and Telahun G.T., Mathematical modeling and optimal control analysis of covid-19 in ethiopia. medRxiv, 2020. [Google Scholar]

Decision Letter 0

Ejaz Ahmad Khan

4 Nov 2022

PONE-D-21-22479Analysis of the different interventions scenario for programmatic measles control in Bangladesh: a modelling studyPLOS ONE

Dear Dr. Kuddus,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please revise your manuscript in the light of the reviewers' comments. Please be specific and address all comments.

Please submit your revised manuscript by Dec 19 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: https://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols.

We look forward to receiving your revised manuscript.

Kind regards,

Ejaz Ahmad Khan, M.D, MPH, FFPH

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf.

2. PLOS requires an ORCID iD for the corresponding author in Editorial Manager on papers submitted after December 6th, 2016. Please ensure that you have an ORCID iD and that it is validated in Editorial Manager. To do this, go to ‘Update my Information’ (in the upper left-hand corner of the main menu), and click on the Fetch/Validate link next to the ORCID field. This will take you to the ORCID site and allow you to create a new iD or authenticate a pre-existing iD in Editorial Manager. Please see the following video for instructions on linking an ORCID iD to your Editorial Manager account: https://www.youtube.com/watch?v=_xcclfuvtxQ.

3. We note that you have indicated that data from this study are available upon request. PLOS only allows data to be available upon request if there are legal or ethical restrictions on sharing data publicly. For more information on unacceptable data access restrictions, please see http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions.

In your revised cover letter, please address the following prompts:

a) If there are ethical or legal restrictions on sharing a de-identified data set, please explain them in detail (e.g., data contain potentially sensitive information, data are owned by a third-party organization, etc.) and who has imposed them (e.g., an ethics committee). Please also provide contact information for a data access committee, ethics committee, or other institutional body to which data requests may be sent.

b) If there are no restrictions, please upload the minimal anonymized data set necessary to replicate your study findings as either Supporting Information files or to a stable, public repository and provide us with the relevant URLs, DOIs, or accession numbers. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories.

We will update your Data Availability statement on your behalf to reflect the information you provide.

4. Please include a separate caption for each figure in your manuscript

5. Please review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript. If you need to cite a retracted article, indicate the article’s retracted status in the References list and also include a citation and full reference for the retraction notice.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Yes

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This is a very well written scientific work. It puts together the different arrangements that can either be given individually or in combination. This piece of work would further strengthen if the cost benefit analysis as well as it will be used as a strong advocacy tool.

Reviewer #2: This is an well written article on the topic of measles in Bangladesh. The mathematical models presented in the paper are really interesting. I would leave a minor comment on enriching the discussion with few other similar studies and citing them. You have already discussed your findings in the discussion, it would be better to have some more similar examples from other LMICs.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: Yes: Dr Khalid Nawaz

Reviewer #2: Yes: Abdullah Nurus Salam Khan

**********

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2023 Jun 29;18(6):e0283082. doi: 10.1371/journal.pone.0283082.r002

Author response to Decision Letter 0


20 Dec 2022

We thank the reviewer for their assessment of our study, and the comments below. We have made changes to the manuscript and replied to other comments below.

Reviewer #1: This is a very well written scientific work. It puts together the different arrangements that can either be given individually or in combination. This piece of work would further strengthen if the cost benefit analysis as well as it will be used as a strong advocacy tool.

Response: Thank you for your valuable comment. We have now added cost benefit analysis of different intervention strategies including distancing, vaccination and treatment to the revised manuscript. Please see page 17-23, line 368 – 521 and page 26-27, line 610-637.

Reviewer #2: This is an well written article on the topic of measles in Bangladesh. The mathematical models presented in the paper are really interesting. I would leave a minor comment on enriching the discussion with few other similar studies and citing them. You have already discussed your findings in the discussion, it would be better to have some more similar examples from other LMICs.

Response: We thank the reviewer for this wonderful suggestion. We have cited some other similar studies in LMICs in the relevant section as well as discussion section to the revised manuscript. Please see page 22-24, line 481 – 488, 527 – 538 and page 26-27, line 595 – 600, 624 – 630.

Attachment

Submitted filename: Response to reviewer comments.docx

Decision Letter 1

Jan Rychtář

2 Mar 2023

Analysis of the different interventions scenario for programmatic measles control in Bangladesh: a modelling study

PONE-D-21-22479R1

Dear Dr. Kuddus,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Jan Rychtář

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #2: All comments have been addressed

Reviewer #3: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #2: Yes

Reviewer #3: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #2: Yes

Reviewer #3: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #2: Yes

Reviewer #3: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #2: Yes

Reviewer #3: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #2: (No Response)

Reviewer #3: Mathematical modeling has played an important role to support planning and evaluation for the larger scale programs. Since the time of measles control in the early 1990s till now, modeling has proved to be an effective tool in the prediction of when threshold breakpoint for elimination has been achieved. The study by Kuddus et al is very important and will make contributions to the current measles infection elimination efforts. The comments related to the above manuscript are indicated below:

Abstract

The abstract is well written and captured all the contents of the manuscript and well structured.

Introduction

I must commend the authors of this manuscript. The introduction section is very well-written.

Materials and methods

- The author has provided in detail the type of modeling functions they have used; however, they have not provided the following.

- I suggest the authors should provide local stability of disease-free and endemic equilibria if possible

- Authors should add more current citations to the one in line 212 e.g., (i) Obabiyi, Olawale Sunday., Akindele Akano Onifade. Global Stability Analysis for Lassa Fever Transmission Dynamics with Optimal Control Application. International Journal of Applied Mathematics, 2018, 31(3), 457 – 482). (ii) Van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for 438 compartmental models of disease transmission. Math. Biosci. 180: 29-48.

- The legend in Figures 5, 6,7,8,9 and 10 are not clear. Authors should provide clear legend for all Figures

- Author should provide me the code used to fit their model to data as well as code used for all the simulations to ensure that what they present was actual established.

Discussion

The discussion of this manuscript is very well-written with appropriate references cited.

General comments

This manuscript is quite useful in the era of measles elimination. The authors are experts in modeling and this expertise can be appropriately used to support measles elimination effort. I suggest the manuscript should be accepted for publication subject to the aforementioned comments.

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #2: Yes: Abdullah Nurus Salam Khan

Reviewer #3: Yes: Akindele Akano Onifade

**********

Acceptance letter

Jan Rychtář

19 Jun 2023

PONE-D-21-22479R1

Analysis of the different interventions scenario for programmatic measles control in Bangladesh: a modelling study

Dear Dr. Kuddus:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Jan Rychtář

Academic Editor

PLOS ONE


Articles from PLOS ONE are provided here courtesy of PLOS

RESOURCES