Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1987 Jun;50(6):779–785. doi: 10.1136/jnnp.50.6.779

Relation of measured brain glucose utilisation and cerebral atrophy in man.

N L Schlageter, B Horwitz, H Creasey, R Carson, R Duara, G W Berg, S I Rapoport
PMCID: PMC1032087  PMID: 3497229

Abstract

The effect of cerebral atrophy on measured cerebral metabolic rates for glucose (CMRglc), as determined with positron emission tomography (PET), was examined in 49 healthy males aged 21-83 years. Global CMRglc and regional CMRglc for 34 grey matter regions parallel to and from 30 to 80 mm above the inferior orbital meatal (IOM) line were measured under resting conditions, using [18F]-fluorodeoxyglucose and an ECAT II positron emission tomograph. Using a GE 8800 CT/T scanner, slices parallel to and from 30 to 80 mm above the IOM line were analysed for CSF volume. Cerebral atrophy, indicated by increased CSF volume, was correlated significantly with global CMRglc, but accounted for no more than 13% of the variance in the CMRglc measurements. Methods for correcting for inter-subject variation in CSF volume were proposed. Global values for CMRglc, uncorrected or corrected for CSF volume, were found to be age invariant. These findings indicate that (a) cerebral atrophy has a small, but statistically significant effect on CMRglc as measured with PET; (b) CMRglc is age invariant in healthy males.

Full text

PDF
779

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Kobayashi K., Ikeda K., Nagao Y., Ogihara R., Kosaka K. A computed tomography study of Alzheimer's disease. J Neurol. 1983;229(2):69–77. doi: 10.1007/BF00313444. [DOI] [PubMed] [Google Scholar]
  2. Brinkman S. D., Sarwar M., Levin H. S., Morris H. H., 3rd Quantitative indexes of computed tomography in dementia and normal aging. Radiology. 1981 Jan;138(1):89–92. doi: 10.1148/radiology.138.1.7455102. [DOI] [PubMed] [Google Scholar]
  3. DeLeo J. M., Schwartz M., Creasey H., Cutler N., Rapoport S. I. Computer-assisted categorization of brain computerized tomography pixels into cerebrospinal fluid, white matter, and gray matter. Comput Biomed Res. 1985 Feb;18(1):79–88. doi: 10.1016/0010-4809(85)90008-4. [DOI] [PubMed] [Google Scholar]
  4. Di Chiro G., Brooks R. A., Dubal L., Chew E. The apical artifact: elevated attenuation values toward the apex of the skull. J Comput Assist Tomogr. 1978 Jan;2(1):65–70. [PubMed] [Google Scholar]
  5. Duara R., Margolin R. A., Robertson-Tchabo E. A., London E. D., Schwartz M., Renfrew J. W., Koziarz B. J., Sundaram M., Grady C., Moore A. M. Cerebral glucose utilization, as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain. 1983 Sep;106(Pt 3):761–775. doi: 10.1093/brain/106.3.761. [DOI] [PubMed] [Google Scholar]
  6. Herscovitch P., Auchus A. P., Gado M., Chi D., Raichle M. E. Correction of positron emission tomography data for cerebral atrophy. J Cereb Blood Flow Metab. 1986 Feb;6(1):120–124. doi: 10.1038/jcbfm.1986.14. [DOI] [PubMed] [Google Scholar]
  7. Horwitz B., Duara R., Rapoport S. I. Age differences in intercorrelations between regional cerebral metabolic rates for glucose. Ann Neurol. 1986 Jan;19(1):60–67. doi: 10.1002/ana.410190111. [DOI] [PubMed] [Google Scholar]
  8. Huang S. C., Phelps M. E., Hoffman E. J., Sideris K., Selin C. J., Kuhl D. E. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980 Jan;238(1):E69–E82. doi: 10.1152/ajpendo.1980.238.1.E69. [DOI] [PubMed] [Google Scholar]
  9. Kuhl D. E., Metter E. J., Riege W. H., Phelps M. E. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1982;2(2):163–171. doi: 10.1038/jcbfm.1982.15. [DOI] [PubMed] [Google Scholar]
  10. Mazziotta J. C., Phelps M. E., Plummer D., Kuhl D. E. Quantitation in positron emission computed tomography: 5. Physical--anatomical effects. J Comput Assist Tomogr. 1981 Oct;5(5):734–743. doi: 10.1097/00004728-198110000-00029. [DOI] [PubMed] [Google Scholar]
  11. Pantano P., Baron J. C., Lebrun-Grandié P., Duquesnoy N., Bousser M. G., Comar D. Regional cerebral blood flow and oxygen consumption in human aging. Stroke. 1984 Jul-Aug;15(4):635–641. doi: 10.1161/01.str.15.4.635. [DOI] [PubMed] [Google Scholar]
  12. Patlak C. S., Fenstermacher J. D. Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975 Oct;229(4):877–884. doi: 10.1152/ajplegacy.1975.229.4.877. [DOI] [PubMed] [Google Scholar]
  13. Schwartz M., Creasey H., Grady C. L., DeLeo J. M., Frederickson H. A., Cutler N. R., Rapoport S. I. Computed tomographic analysis of brain morphometrics in 30 healthy men, aged 21 to 81 years. Ann Neurol. 1985 Feb;17(2):146–157. doi: 10.1002/ana.410170208. [DOI] [PubMed] [Google Scholar]
  14. Shiue C. Y., Salvadori P. A., Wolf A. P., Fowler J. S., MacGregor R. R. A new improved synthesis of 2-deoxy-2-[18F]fluoro-d-glucose from 18F-labeled acetyl hypofluorite. J Nucl Med. 1982 Oct;23(10):899–903. [PubMed] [Google Scholar]
  15. Zatz L. M., Jernigan T. L., Ahumada A. J., Jr Changes on computed cranial tomography with aging: intracranial fluid volume. AJNR Am J Neuroradiol. 1982 Jan-Feb;3(1):1–11. [PMC free article] [PubMed] [Google Scholar]
  16. de Leon M. J., George A. E., Ferris S. H., Christman D. R., Fowler J. S., Gentes C. I., Brodie J., Reisberg B., Wolf A. P. Positron emission tomography and computed tomography assessments of the aging human brain. J Comput Assist Tomogr. 1984 Feb;8(1):88–94. doi: 10.1097/00004728-198402000-00017. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES