Abstract
Increased concentration of the excitatory neurotransmitter aspartic acid in actively spiking human epileptic cerebral cortex was recently described. In order to further characterise changes in the aspartergic system in epileptic brain, the behaviour of aspartic acid aminotransferase (AAT), a key enzyme involved in aspartic acid metabolism has now been examined. Electrocorticography performed during surgery was employed to identify cortical epileptic spike foci in 16 patients undergoing temporal lobectomy for intractable seizures. Patients with spontaneously spiking lateral temporal cortex (n = 8) were compared with a non-spiking control group (n = 8) of patients in whom the epileptic lesions were confined to the hippocampus sparing the temporal convexity. Mean activity of AAT in spiking cortex was significantly elevated by 16-18%, with aspartic acid concentration increased by 28%. Possible explanations for the enhanced AAT activity include increased proliferation of cortical AAT-containing astrocytes at the spiking focus and/or a generalised increase in neuronal or extraneuronal metabolism consequent to the ongoing epileptic discharge. It is suggested that the data provide additional support for a disturbance of central excitatory aspartic acid mechanisms in human epileptic brain.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdul-Ghani A. S. Effect of alpha-amino-4-phosphonobutyrate on the release of endogenous glutamate and aspartate from cortical synaptosomes of epileptic rats. J Neurochem. 1985 Aug;45(2):365–369. doi: 10.1111/j.1471-4159.1985.tb03997.x. [DOI] [PubMed] [Google Scholar]
- Allen I. C., Grieve A., Griffiths R. Differential changes in the content of amino acid neurotransmitters in discrete regions of the rat brain prior to the onset and during the course of homocysteine-induced seizures. J Neurochem. 1986 May;46(5):1582–1592. doi: 10.1111/j.1471-4159.1986.tb01780.x. [DOI] [PubMed] [Google Scholar]
- Avoli M., Olivier A. Bursting in human epileptogenic neocortex is depressed by an N-methyl-D-aspartate antagonist. Neurosci Lett. 1987 May 6;76(2):249–254. doi: 10.1016/0304-3940(87)90724-5. [DOI] [PubMed] [Google Scholar]
- Chapman A. G., Cheetham S. C., Hart G. P., Meldrum B. S., Westerberg E. Effects of two convulsant beta-carboline derivatives, DMCM and beta-CCM, on regional neurotransmitter amino acid levels and on in vitro D-[3H]aspartate release in rodents. J Neurochem. 1985 Aug;45(2):370–381. doi: 10.1111/j.1471-4159.1985.tb03998.x. [DOI] [PubMed] [Google Scholar]
- Chapman A. G., Meldrum B. S., Mendes E. Acute anticonvulsant activity of structural analogues of valproic acid and changes in brain GABA and aspartate content. Life Sci. 1983 Apr 25;32(17):2023–2031. doi: 10.1016/0024-3205(83)90054-1. [DOI] [PubMed] [Google Scholar]
- Chapman A. G., Westerberg E., Premachandra M., Meldrum B. S. Changes in regional neurotransmitter amino acid levels in rat brain during seizures induced by L-allylglycine, bicuculline, and kainic acid. J Neurochem. 1984 Jul;43(1):62–70. doi: 10.1111/j.1471-4159.1984.tb06679.x. [DOI] [PubMed] [Google Scholar]
- Cooper A. J. Glutamate-aspartate transaminase. Methods Enzymol. 1985;113:66–69. doi: 10.1016/s0076-6879(85)13014-4. [DOI] [PubMed] [Google Scholar]
- Emson P. C., Joseph M. H. Neurochemical and morphological changes during the development of cobalt-induced epilepsy in the rat. Brain Res. 1975 Jul 25;93(1):91–110. doi: 10.1016/0006-8993(75)90288-7. [DOI] [PubMed] [Google Scholar]
- Engelsen B., Elsayed S. Increased concentrations of aspartic acid in the cerebrospinal fluid of patients with epilepsy and trigeminal neuralgia: an effect of medication? Acta Neurol Scand. 1984 Aug;70(2):70–76. doi: 10.1111/j.1600-0404.1984.tb00805.x. [DOI] [PubMed] [Google Scholar]
- Fabisiak J. P., Schwark W. S. Aspects of the pentylenetetrazol kindling model of epileptogenesis in the rat. Exp Neurol. 1982 Oct;78(1):7–14. doi: 10.1016/0014-4886(82)90184-4. [DOI] [PubMed] [Google Scholar]
- Herron C. E., Williamson R., Collingridge G. L. A selective N-methyl-D-aspartate antagonist depresses epileptiform activity in rat hippocampal slices. Neurosci Lett. 1985 Nov 11;61(3):255–260. doi: 10.1016/0304-3940(85)90473-2. [DOI] [PubMed] [Google Scholar]
- Jones A. W., Croucher M. J., Meldrum B. S., Watkins J. C. Suppression of audiogenic seizures in DBA/2 mice by two new dipeptide NMDA receptor antagonists. Neurosci Lett. 1984 Mar 23;45(2):157–161. doi: 10.1016/0304-3940(84)90092-2. [DOI] [PubMed] [Google Scholar]
- Leach M. J., Marden C. M., Miller A. A., O'Donnell R. A., Weston S. B. Changes in cortical amino acids during electrical kindling in rats. Neuropharmacology. 1985 Oct;24(10):937–940. doi: 10.1016/0028-3908(85)90118-2. [DOI] [PubMed] [Google Scholar]
- Meldrum B. S., Croucher M. J., Badman G., Collins J. F. Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio. Neurosci Lett. 1983 Aug 19;39(1):101–104. doi: 10.1016/0304-3940(83)90172-6. [DOI] [PubMed] [Google Scholar]
- Meldrum B. Excitatory amino acid antagonists as novel anticonvulsants. Adv Exp Med Biol. 1986;203:321–329. doi: 10.1007/978-1-4684-7971-3_24. [DOI] [PubMed] [Google Scholar]
- Nitsch C., Schmude B., Haug P. Alterations in the content of amino acid neurotransmitters before the onset and during the course of methoxypyridoxine-induced seizures in individual rabbit brain regions. J Neurochem. 1983 Jun;40(6):1571–1580. doi: 10.1111/j.1471-4159.1983.tb08128.x. [DOI] [PubMed] [Google Scholar]
- Norris D. K., Murphy R. A., Chung S. H. Alteration of amino acid metabolism in epileptogenic mice by elevation of brain pyridoxal phosphate. J Neurochem. 1985 May;44(5):1403–1410. doi: 10.1111/j.1471-4159.1985.tb08776.x. [DOI] [PubMed] [Google Scholar]
- Piredda S., Gale K. Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex. Brain Res. 1986 Jul 9;377(2):205–210. doi: 10.1016/0006-8993(86)90859-0. [DOI] [PubMed] [Google Scholar]
- Plum C. M. Free amino acid levels in the cerebrospinal fluid of normal humans and their variation in cases of epilepsy and Spielmeyer-Vogt-Batten disease. J Neurochem. 1974 Sep;23(3):595–600. doi: 10.1111/j.1471-4159.1974.tb06064.x. [DOI] [PubMed] [Google Scholar]
- Schechter P. J., Tranier Y., Grove J. Effect of n-dipropylacetate on amino acid concentrations in mouse brain: correlations with anti-convulsant activity. J Neurochem. 1978 Nov;31(5):1325–1327. doi: 10.1111/j.1471-4159.1978.tb06258.x. [DOI] [PubMed] [Google Scholar]
- Schousboe A., Svenneby G., Hertz L. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem. 1977 Dec;29(6):999–1005. doi: 10.1111/j.1471-4159.1977.tb06503.x. [DOI] [PubMed] [Google Scholar]
- Sherwin A., Quesney F., Gauthier S., Olivier A., Robitaille Y., McQuaid P., Harvey C., van Gelder N. Enzyme changes in actively spiking areas of human epileptic cerebral cortex. Neurology. 1984 Jul;34(7):927–933. doi: 10.1212/wnl.34.7.927. [DOI] [PubMed] [Google Scholar]
- Sloviter R. S., Dempster D. W. "Epileptic" brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res Bull. 1985 Jul;15(1):39–60. doi: 10.1016/0361-9230(85)90059-0. [DOI] [PubMed] [Google Scholar]
- TOWER D. B., ELLIOTT K. A. C. Activity of acetylcholine system in human epileptogenic focus. J Appl Physiol. 1952 Feb;4(8):669–676. doi: 10.1152/jappl.1952.4.8.669. [DOI] [PubMed] [Google Scholar]
- Van Gelder N. M., Courtois A. Close correlation between changing content of specific amino acids in epileptogenic cortex of cats, and severity of epilepsy. Brain Res. 1972 Aug 25;43(2):477–484. doi: 10.1016/0006-8993(72)90402-7. [DOI] [PubMed] [Google Scholar]
- Weitz R., Merlob P., Amir J., Reisner S. H. A possible role for aspartic acid in neonatal seizures. Arch Neurol. 1981 Apr;38(4):258–259. doi: 10.1001/archneur.1981.00510040084017. [DOI] [PubMed] [Google Scholar]
- Wiechert P., Göllnitz G. Stoffwechseluntersuchungen des cerebralen anfallsgeschehens. Die konzentration der freien aminosäuren im hirngewebe vor und während experimentell ausgelöster cerebraler anfälle. J Neurochem. 1969 Jun;16(3):1007–1016. doi: 10.1111/j.1471-4159.1969.tb08991.x. [DOI] [PubMed] [Google Scholar]
- Yu A. C., Schousboe A., Hertz L. Metabolic fate of 14C-labeled glutamate in astrocytes in primary cultures. J Neurochem. 1982 Oct;39(4):954–960. doi: 10.1111/j.1471-4159.1982.tb11482.x. [DOI] [PubMed] [Google Scholar]
