Skip to main content
Journal of Applied Statistics logoLink to Journal of Applied Statistics
. 2022 Apr 22;50(10):2079–2107. doi: 10.1080/02664763.2022.2064977

A double generally weighted moving average control chart for monitoring the process variability

Vasileios Alevizakos a, Kashinath Chatterjee b, Christos Koukouvinos a,CONTACT, Angeliki Lappa a
PMCID: PMC10332243  PMID: 37434629

Abstract

In the present article, a double generally weighted moving average (DGWMA) control chart based on a three-parameter logarithmic transformation is proposed for monitoring the process variability, namely the S2-DGWMA chart. Monte-Carlo simulations are utilized in order to evaluate the run-length performance of the S2-DGWMA chart. In addition, a detailed comparative study is conducted to compare the performance of the S2-DGWMA chart with several well-known memory-type control charts in the literature. The comparisons indicate that the proposed one is more efficient in detecting small shifts, while it is more sensitive in identifying upward shifts in the process variability. A real data example is given to present the implementation of the new S2-DGWMA chart.

Keywords: Average run-length, control chart, double generally weighted moving average, logarithmic transformation, process variability

1. Introduction

There are two types of variation that are present in a production process, namely, the common causes and assignable causes of variation. The process is declared as in-control (IC) when it operates with the common causes of variation. Nevertheless, when assignable causes of variation arise from external sources, they lead to an out-of-control (OOC) process [34]. The control charts constitute an essential part of the Statistical Process Control (SPC) in detecting assignable causes of variation that may affect either the mean or variance of the process. They are also classified into location and dispersion charts, where the first are used to identify shifts in the process mean, while the latter are suitable for detecting shifts in the process variance.

The Shewhart-type charts, like X¯, R and S charts, are efficient in detecting large shifts due to their memoryless property [34]. However, the memory-type charts are more sensitive in detecting small and moderate shifts because they take into consideration both the current and past information. The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) charts are the first memory-type charts, which were developed by Page [35,36] and Roberts [38], respectively. Shamma and Shamma [39] developed the Double EWMA (DEWMA) chart, Haq [21,22] proposed the Hybrid EWMA (HEWMA) chart, and Alevizakos et al. [4] introduced the Triple EWMA (TEWMA) chart. Sheu and Lin [41] proposed the generally weighted moving average (GWMA) chart as an extension of the EWMA chart, while Sheu and Hsieh [40] extended the GWMA chart to a Double GWMA (DGWMA) chart. Particularly, the DGWMA charting scheme is a weighted moving average of a weighted moving average, that is, the smoothing process is performed twice. More information about the DGWMA scheme can be found in Chiu and Sheu [19], Tai et al. [43], Kang and Baik [28], Huang et al. [25], Chiu and Lu [18], Lu [31], Alevizakos et al. [7], Karakani et al. [29], Alevizakos et al. [6], Mabude et al. [32] and Chatterjee et al. [16].

In many industrial applications, it is important to monitor the presence of shifts in the process dispersion rather than the process mean. Therefore, many researchers have developed memory-type control charts for monitoring the process variability. For instance, Castagliola [11] and Castagliola et al. [12] used a three-parameter logarithmic transformation to sample variance ( S2) in order to construct the S2-EWMA and S2-CUSUM charts, respectively. Furthermore, Castagliola et al. [14] introduced a Variable Sampling Interval (VSI) version of the S2-EWMA [11] chart, referred to as VSI S2-EWMA chart. Taking into account the aforementioned logarithmic transformation, Abbas, Riaz and Does [1] developed the CS-EWMA chart, Tariq et al. [44] introduced a HEWMA chart for monitoring the process variability (named as HEWMTn chart, but hereafter, for simplicity purposes, it is denoted by S2-HEWMA), Chatterjee et al. [15] proposed the S2-TEWMA chart for monitoring the process dispersion and Alevizakos et al. [5] developed the S2-GWMA chart as an expansion of the S2-EWMA chart. Other works about the control charting technique for monitoring the process variability are those of Castagliola et al. [13], Huwang et al. [26], Sheu and Lu [42], Abbasi et al. [3], Ali and Haq [8,9], Haq [23,24], Riaz et al. [37], Mahadik et al. [33], Abbasi et al. [2], Arshad et al. [10], Li and Mukherjee [30], and Zaman [45,46], to name a few.

To the best of our knowledge, as well as the research of Mabude et al. [32], most of the works on the DGWMA scheme are related with monitoring the process location or jointly monitoring the process location and variability. Therefore, motivated by Sheu and Hsieh [40], and Castagliola [11], the current article extends the work of Alevizakos et al. [5] to a DGWMA chart based on a three-parameter logarithmic transformation to S2, named as S2-DGWMA chart for monitoring the process variability. The proposed chart is compared with several dispersion control charts such as the S2-EWMA, CS-EWMA, S2-HEWMA, S2-TEWMA, S2-GWMA and VSI S2-EWMA charts. The remainder of this article is structured as follows. In Section 2, we present the proposed S2-DGWMA chart. A simulation study is conducted in Section 3 to evaluate its efficiency through the run-length distribution, while its performance is compared with those of the previously mentioned charts in Section 4. A real data example is presented in Section 5 and some concluding remarks are summarized in Section 6.

2. The proposed S2-DGWMA control chart

Assume that Xij, i=1,2,, j=1,2,,n, is the jth observation in the ith random sample of size n (>1) and XijiidN(μ0,τσ0), where μ0 and σ0 are the corresponding IC values of the process mean and standard deviation. The process is considered to be IC, if τ=1; otherwise, the process is declared as OOC and consequently, τ1. Here, we are interested in monitoring the shifts in the process variance from an IC value σ02 to an OOC σ12=(τσ0)2, where τ1, considering that the process mean μ0 remains stable. The sample variance Si2 is given by

Si2=1n1j=1n(XijX¯i)2,i=1,2, (1)

where X¯i=1nj=1nXij, i=1,2, is the sample mean. In order to monitor the process variability, the three-parameter logarithmic transformation applied to Si2 [27], is utilized, i.e.

Ti=a+bln(Si2+c),i=1,2, (2)

where a=A(n)2B(n)ln(σ0), b=B(n), c=C(n)σ02 and, the functions A(n), B(n) and C(n) depend only on n. Castagliola [11] first showed that, for a fixed n, if the constants a, b and c are suitably selected, then the statistic Ti is approximately a normal random variable with mean μT(n) and standard deviation σT(n). Table 1 shows the values of A(n), B(n), C(n), μT(n) and σT(n) for n=3,4,,15, that were originally presented in Table I of Castagliola [11].

Table 1.

Values of A(n),B(n),C(n),μT(n),σT(n) and DG0 for n=3,4,,15.

n A(n) B(n) C(n) μT(n) σT(n) DG0
3 −0.6627 1.8136 0.6777 0.02472 0.9165 0.276
4 −0.7882 2.1089 0.6261 0.01266 0.9502 0.237
5 −0.8969 2.3647 0.5979 0.00748 0.9670 0.211
6 −0.9940 2.5941 0.5801 0.00485 0.9765 0.193
7 −1.0827 2.8042 0.5678 0.00335 0.9825 0.178
8 −1.1647 2.9992 0.5588 0.00243 0.9864 0.167
9 −1.2413 3.1820 0.5519 0.00182 0.9892 0.157
10 −1.3135 3.3548 0.5465 0.00141 0.9912 0.149
11 −1.3820 3.5189 0.5421 0.00112 0.9927 0.142
12 −1.4473 3.6757 0.5384 0.00090 0.9938 0.136
13 −1.5097 3.8260 0.5354 0.00074 0.9947 0.131
14 −1.5697 3.9705 0.5327 0.00062 0.9955 0.126
15 −1.6275 4.1100 0.5305 0.00052 0.9960 0.122

The plotting statistic of the proposed S2-DGWMA chart is defined through the following system of equations:

{Gi=j=1i(q(j1)αqjα)Tij+1+qiαG0,DGi=j=1i(q(j1)αqjα)Gij+1+qiαDG0,i=1,2,, (3)

where Ti is given by Equation (2), q[0,1) is the design parameter, α>0 is the adjustment parameter and DG0=G0=A(n)+B(n)ln(1+C(n)) are the starting values. The values of the DG0 are provided in the last column of Table 1. Moreover, the DGi statistic follows approximately the normal distribution with mean E(DGi)=μT(n) and variance Var(DGi)=WiσT2(n), where

Wi=j=1i(u=ji(q(iu)αq(iu+1)α)(q(uj)αq(uj+1)α))2.

The time-varying control limits of the S2-DGWMA chart are given by

LCLi=μT(n)LσT(n)Wi,CLi=μT(n),UCLi=μT(n)+LσT(n)Wi, (4)

where L is a positive control chart multiplier, when the process is IC. For large values of i, the asymptotic control limits of the S2-DGWMA chart are given by

LCL=μT(n)LσT(n)W,CL=μT(n),UCL=μT(n)+LσT(n)W, (5)

where W=limiWi. Hereafter, for simplicity, we use the asymptotic control limits, given by Equation (5), in order to develop the S2-DGWMA chart. The proposed chart is designed by plotting the statistic DGi versus the sample number i. The process is declared as IC, when LCL<DGi<UCL; otherwise, it is considered to be OOC. It should be mentioned that the S2-DGWMA chart reduces to the S2-HEWMA chart when q=1λ, α=1 and λ=λ1=λ2, where 0<λ1,λ21 are the smoothing constants of the S2-HEWMA chart.

3. Performance evaluation of the proposed chart

The average run-length (ARL) and the standard deviation of the run-length (SDRL) are most commonly used to measure the performance of a control chart. Particularly, the ARL is the average number of the charting statistics that must be drawn on a control chart until an OOC signal is triggered [34]. When the process dispersion is IC ( τ=1.00), a large value of ARL0 is preferred. Nevertheless, when the process variability is OOC, that is, the standard deviation shifts from σ0 to σ1=τσ0 (with τ1.00), a small OOC ARL ( ARL1) value is preferred. Here, both the ARL and SDRL measures are utilized in order to evaluate the performance of the proposed chart. Furthermore, we calculate the performance of the control chart over a range of shifts, through the expected ARL (EARL) which is defined as

EARL=τ=τminτmaxARL(τ)fτ(τ)dτ,

where ARL(τ) is the ARL0 if τ=1 or the ARL1 value corresponding to a chart specific shift ( τ1) and fτ(τ) is the probability density function of the magnitude of the process shift when τ[τmin,τmax].

A Monte-Carlo simulation algorithm is performed in R statistical software to calculate the run-length distribution of the two-sided S2-DGWMA chart with asymptotic control limits (given by Equation (5)). The algorithm is run 10,000 iterations to calculate the average and the standard deviation of those 10,000 run-lengths. The steps of the simulation algorithm are briefly described as follows:

  1. For a fixed n value, generate 10,000 random subgroups that follow the N(0,τσ0) distribution with σ0=1.

  2. For various q and a values, obtain the L value, such that the ARL0 is approximately equal to the pre-fixed values.

  3. Compute the Si2, Ti, Gi and DGi statistics for each subgroup (i.e. i=1,2,,10,000) using Equations (1), (2), and (3).

  4. Calculate the asymptotic control limits given by Equation (5).

  5. For the purpose of computing the run-length, compare each DGi statistic with the control limits given by Equation (5) for i=1,2,,10,000. If the process is OOC, stop the simulations and record the run-length value.

  6. Repeat Steps (1) through (5) for 10,000 times and compute the ARL and the SDRL.

It should be mentioned that, when the process is IC, then τ=1.00 while τ1.00 for an OOC process. In addition, the ARL0 is fixed approximately equal to 200 and 370, while the examined shifts in the process variability are τ=σ1σ0{0.50,0.60,0.70,0.80,0.90,0.95,1.05,1.10,1.20,1.30,1.40,1.50,1.60,1.70,1.80,1.90,2.00}, with τ<1.00 referring to the downward shifts, and τ>1.00 corresponding to the upward shifts. The control chart multiplier L of the S2-DGWMA chart with q{0.50,0.60,0.70,0.80,0.90,0.95} and α{0.70,0.80,0.90,1.00,1.20,1.50} is obtained, via the above Monte-Carlo simulation algorithm, using the asymptotic control limits given by Equation (5), to set the ARL0200 and 370.

Particularly, Table 2 presents the L values of the S2-DGWMA control chart for various combinations of the design parameters (q,α) and sample size n = 3, 5, 7 and 9, when ARL0370. Tables 3 and A1 in the Supplementary Material present the ARL, SDRL (in the parenthesis) and EARL results of the S2-DGWMA chart using asymptotic control limits with q{0.50,0.60,0.70,0.80,0.90,0.95}, and α{0.70,0.80,0.90,1.00,1.20,1.50}, when ARL0370 as well as n = 5 and 9, respectively. Furthermore, Table A2 in the Supplementary Material presents the ARL, SDRL (in the parenthesis) and EARL results, along with the L values of the S2-DGWMA chart with the same (q,α) combinations using asymptotic control limits, when ARL0200 and n = 5. The smallest ARL1 value for each τ and n values is indicated with bold print in the aforementioned Tables, as well.

Table 2.

(q,α,L) parameter combinations for the S2-DGWMA control chart using asymptotic control limits with sample size n = 3, 5, 7 and 9 at ARL0370.

q q
n α 0.50 0.60 0.70 0.80 0.90 0.95 n α 0.50 0.60 0.70 0.80 0.90 0.95
3 0.70 2.8640 2.7860 2.6700 2.5000 2.9121 5.0274 7 0.70 2.8340 2.7848 2.6710 2.4510 2.2007 2.2374
  0.80 2.8590 2.7760 2.6600 2.4770 2.4155 2.72375   0.80 2.8330 2.7790 2.6645 2.4650 2.1050 2.4255
  0.90 2.8530 2.7720 2.6620 2.4840 2.2290 2.9217   0.90 2.8290 2.7731 2.6650 2.4860 2.1480 1.9885
  1.00 2.8540 2.7700 2.6680 2.5080 2.2350 2.4045   1.00 2.8260 2.7735 2.6742 2.5150 2.2130 1.9328
  1.20 2.8590 2.7760 2.6900 2.5670 2.3480 2.1230   1.20 2.8270 2.7770 2.7005 2.5760 2.3492 2.0942
  1.50 2.8770 2.8090 2.7420 2.6550 2.4980 2.3240   1.50 2.8280 2.7950 2.7452 2.6650 2.5100 2.3300
5 0.70 2.8200 2.7780 2.6650 2.4590 2.3870 3.8403 9 0.70 2.8480 2.7930 2.6700 2.4380 2.1140 2.8627
  0.80 2.8160 2.7710 2.6630 2.4580 2.1650 2.8520   0.80 2.8420 2.7845 2.6660 2.4525 2.0805 2.1678
  0.90 2.8150 2.7640 2.6670 2.4850 2.1630 2.2677   0.90 2.8370 2.7820 2.6725 2.4810 2.1370 1.8850
  1.00 2.8110 2.7610 2.6770 2.5170 2.2170 2.0030   1.00 2.8370 2.7810 2.6810 2.5150 2.2070 1.9020
  1.20 2.8090 2.7640 2.6930 2.5790 2.3490 2.1040   1.20 2.8370 2.7855 2.7080 2.5870 2.3450 2.0915
  1.50 2.8100 2.7780 2.7310 2.6570 2.5090 2.3290   1.50 2.8395 2.8040 2.7540 2.6740 2.5110 2.3240

Table 3.

ARL, SDRL (in the parenthesis) and EARL values of the S2-DGWMA control chart using asymptotic control limits at n = 5 and ARL0370.

  q = 0.95 0.90
τ α=0.70 0.80 0.90 1.00 1.20 1.50 0.70 0.80 0.90 1.00 1.20 1.50
0.50 29.96 24.37 25.43 20.07 15.12 11.53 20.64 15.99 13.56 11.99 10.01 8.32
  (27.57) (16.45) (2.72) (1.07) (0.89) (0.77) (1.48) (1.16) (1.01) (0.92) (0.82) (0.78)
0.60 24.08 20.72 28.41 23.12 17.20 13.06 25.00 19.14 16.03 14.07 11.66 9.83
  (31.96) (20.80) (6.71) (1.82) (1.51) (1.38) (3.24) (2.02) (1.76) (1.61) (1.50) (1.74)
0.70 20.70 18.21 31.68 28.17 20.77 16.18 31.92 24.62 20.40 17.85 15.07 14.14
  (36.78) (24.88) (13.15) (3.35) (2.94) (3.54) (7.69) (3.87) (3.46) (3.34) (3.72) (5.90)
0.80 19.71 17.91 37.36 38.62 29.35 27.23 44.33 36.72 30.53 27.44 25.99 31.51
  (46.63) (32.07) (23.84) (8.16) (8.77) (13.97) (19.10) (9.59) (9.22) (9.98) (13.35) (22.83)
0.90 27.65 24.94 59.32 77.52 74.55 93.06 78.81 80.21 74.40 75.34 89.12 126.97
  (92.38) (63.05) (62.88) (42.22) (50.47) (78.44) (64.22) (44.19) (45.45) (52.87) (75.31) (116.85)
0.95 78.79 57.73 125.44 172.47 186.36 238.66 155.79 178.10 179.50 189.46 230.49 296.82
  (374.86) (205.40) (192.56) (152.19) (165.59) (227.07) (193.08) (151.86) (152.44) (169.17) (217.29) (287.51)
1.00 368.21 368.41 370.43 370.43 370.94 369.94 369.77 370.80 369.79 370.09 370.38 370.10
  (1872.21) (1623.40) (838.05) (453.42) (369.55) (361.31) (741.61) (458.29) (385.64) (372.60) (364.89) (370.19)
1.05 16.28 18.72 47.97 93.66 139.20 167.49 45.83 89.39 118.07 136.49 161.33 176.64
  (147.74) (106.57) (122.35) (125.85) (139.39) (163.35) (107.45) (121.03) (129.02) (137.57) (159.92) (171.68)
1.10 2.50 3.81 12.38 31.65 54.66 70.35 12.77 30.11 44.41 53.28 66.22 78.29
  (15.41) (18.18) (31.08) (40.45) (50.75) (63.67) (27.68) (38.37) (46.22) (50.96) (61.77) (73.70)
1.20 1.26 1.53 3.72 10.94 20.33 24.66 4.18 10.38 15.39 18.71 22.36 25.89
  (2.70) (3.79) (7.44) (10.64) (13.98) (17.44) (6.50) (10.11) (12.22) (14.00) (16.85) (21.31)
1.30 1.10 1.23 2.22 6.78 12.91 14.81 2.58 6.28 9.37 11.23 12.96 14.14
  (0.86) (1.58) (3.31) (5.01) (6.24) (7.55) (3.08) (4.87) (5.77) (6.42) (7.41) (9.13)
1.40 1.06 1.12 1.71 5.16 10.10 11.31 1.99 4.66 6.99 8.38 9.57 10.03
  (0.57) (0.86) (2.03) (3.08) (3.71) (4.32) (1.95) (3.08) (3.54) (3.82) (4.30) (5.10)
1.50 1.04 1.08 1.45 4.30 8.63 9.58 1.67 3.79 5.75 6.91 7.87 8.06
  (0.42) (0.60) (1.35) (2.16) (2.65) (2.87) (1.38) (2.19) (2.55) (2.73) (2.91) (3.26)
1.60 1.03 1.05 1.31 3.76 7.70 8.57 1.48 3.25 4.98 6.02 6.88 7.00
  (0.31) (0.44) (1.01) (1.67) (2.04) (2.16) (1.05) (1.69) (1.98) (2.09) (2.20) (2.36)
1.70 1.02 1.04 1.22 3.39 7.06 7.88 1.37 2.87 4.43 5.40 6.20 6.31
  (0.24) (0.35) (0.79) (1.36) (1.68) (1.72) (0.86) (1.38) (1.60) (1.69) (1.76) (1.84)
1.80 1.02 1.03 1.17 3.12 6.57 7.38 1.30 2.61 4.04 4.94 5.72 5.83
  (0.20) (0.28) (0.64) (1.16) (1.43) (1.46) (0.72) (1.18) (1.36) (1.43) (1.47) (1.50)
1.90 1.01 1.02 1.13 2.91 6.19 6.99 1.24 2.41 3.75 4.59 5.35 5.46
  (0.16) (0.22) (0.53) (1.02) (1.26) (1.26) (0.62) (1.04) (1.18) (1.25) (1.27) (1.27)
2.00 1.01 1.02 1.11 2.75 5.88 6.67 1.19 2.24 3.50 4.31 5.04 5.17
  (0.13) (0.20) (0.46) (0.91) (1.11) (1.13) (0.54) (0.95) (1.06) (1.11) (1.12) (1.11)
EARL 35.19 33.47 45.16 53.19 58.48 64.01 48.10 51.79 53.90 56.06 60.93 68.67
  q = 0.80 0.70
τ α=0.70 0.80 0.90 1.00 1.20 1.50 0.70 0.80 0.90 1.00 1.20 1.50
0.50 10.21 9.06 8.29 7.71 6.91 6.25 7.63 7.02 6.58 6.25 5.83 5.70
  (1.17) (1.04) (0.95) (0.90) (0.88) (1.05) (1.20) (1.10) (1.06) (1.05) (1.13) (1.67)
0.60 12.85 11.25 10.23 9.49 8.66 8.52 10.01 9.18 8.64 8.33 8.23 9.32
  (2.14) (1.94) (1.85) (1.84) (2.09) (3.22) (2.34) (2.28) (2.32) (2.52) (3.28) (5.23)
0.70 17.85 15.59 14.30 13.62 13.59 16.18 14.98 14.02 13.75 13.99 15.69 21.44
  (4.38) (4.17) (4.34) (4.85) (6.56) (10.75) (5.25) (5.58) (6.35) (7.40) (10.24) (16.99)
0.80 29.72 26.86 26.27 27.04 32.40 46.79 28.58 29.06 31.28 35.08 45.45 69.98
  (11.22) (11.97) (13.84) (16.37) (24.22) (40.65) (15.28) (17.96) (22.17) (27.53) (39.65) (65.55)
0.90 80.77 81.47 89.32 101.29 135.17 194.50 98.17 110.49 126.85 148.08 191.69 278.84
  (53.60) (61.28) (73.75) (88.79) (125.48) (187.89) (80.82) (97.76) (116.41) (140.29) (183.33) (276.86)
0.95 196.69 208.81 233.41 258.42 397.38 381.92 254.25 279.18 306.36 330.86 379.15 458.64
  (168.36) (188.51) (220.32) (248.17) (296.95) (377.97) (240.79) (267.24) (299.22) (324.12) (372.54) (457.90)
1.00 370.66 369.69 370.52 370.70 370.27 370.25 370.02 370.19 370.49 370.40 370.31 370.12
  (385.07) (372.21) (370.68) (370.74) (370.87) (370.15) (372.02) (370.07) (370.50) (367.06) (367.95) (370.58)
1.05 119.40 137.51 153.14 163.25 174.62 177.78 142.26 154.94 163.82 171.00 174.31 177.76
  (129.66) (140.30) (154.20) (162.34) (173.02) (173.85) (145.94) (154.52) (161.22) (170.56) (172.00) (175.21)
1.10 44.61 53.84 61.31 67.38 76.78 83.06 56.45 63.70 69.78 75.14 81.35 84.46
  (46.45) (52.23) (58.16) (63.79) (73.21) (79.22) (54.70) (61.04) (67.09) (72.35) (78.14) (82.81)
  q = 0.80 0.70
τ α=0.70 0.80 0.90 1.00 1.20 1.50 0.70 0.80 0.90 1.00 1.20 1.50
1.20 15.19 18.07 20.25 21.98 24.62 27.24 18.60 20.72 22.30 23.86 25.97 28.46
  (12.68) (14.63) (16.43) (18.11) (21.32) (24.07) (15.73) (17.66) (19.32) (21.13) (23.45) (26.41)
1.30 8.78 10.25 11.27 11.95 12.97 13.94 10.18 11.09 11.78 12.28 13.10 14.06
  (6.11) (6.80) (7.41) (7.96) (9.22) (10.67) (7.25) (7.92) (8.69) (9.21) (10.31) (11.44)
1.40 6.26 7.28 7.93 8.33 8.78 9.17 6.99 7.51 7.89 8.17 8.51 9.01
  (3.77) (4.12) (4.39) (4.60) (5.16) (5.85) (4.39) (4.67) (4.96) (5.27) (5.77) (6.62)
1.50 4.94 5.77 6.25 6.54 6.80 6.98 5.38 5.77 6.01 6.16 6.35 6.58
  (2.73) (2.93) (3.02) (3.13) (3.36) (3.79) (3.10) (3.23) (3.34) (3.46) (3.75) (4.13)
1.60 4.16 4.84 5.26 5.52 5.72 5.80 4.44 4.75 4.94 5.06 5.19 5.30
  (2.12) (2.24) (2.30) (2.36) (2.47) (2.71) (2.39) (2.45) (2.50) (2.58) (2.72) (2.94)
1.70 3.60 4.21 4.61 4.85 5.04 5.07 3.80 4.08 4.25 4.36 4.47 4.54
  (1.71) (1.81) (1.86) (1.88) (1.94) (2.08) (1.91) (1.95) (1.98) (2.03) (2.12) (2.67)
1.80 3.20 3.77 4.14 4.36 4.54 4.57 3.33 3.60 3.76 3.87 3.95 4.00
  (1.43) (1.51) (1.54) (1.55) (1.57) (1.64) (1.58) (1.61) (1.62) (1.64) (1.67) (1.74)
1.90 2.91 3.42 3.79 4.00 4.18 4.20 3.00 3.25 3.39 3.49 3.58 3.63
  (1.25) (1.30) (1.32) (1.31) (1.29) (1.32) (1.36) (1.36) (1.36) (1.37) (1.38) (1.43)
2.00 2.68 3.17 3.51 3.73 3.92 3.95 2.74 2.98 3.13 3.22 3.30 3.35
  (1.11) (1.15) (1.17) (1.15) (1.13) (1.14) (1.20) (1.20) (1.20) (1.20) (1.19) (1.20)
EARL 53.74 55.70 58.70 61.74 71.52 78.52 58.79 62.08 65.69 69.63 77.10 90.99
  q = 0.60 0.50
τ α=0.70 0.80 0.90 1.00 1.20 1.50 0.70 0.80 0.90 1.00 1.20 1.50
0.50 6.61 6.19 5.88 5.69 5.57 5.91 6.33 6.03 5.88 5.81 6.01 6.97
  (1.38) (1.33) (1.34) (1.39) (1.73) (2.56) (1.74) (1.76) (1.88) (2.07) (2.69) (4.12)
0.60 9.19 8.70 8.48 8.49 9.16 11.57 9.64 9.51 9.72 10.18 11.90 16.11
  (2.86) (3.00) (3.27) (3.73) (5.09) (8.03) (4.04) (4.48) (5.18) (6.01) (8.36) (13.02)
0.70 15.25 15.18 15.69 16.87 20.78 30.96 18.65 19.58 21.61 24.48 32.29 48.40
  (7.27) (8.24) (9.58) (11.50) (16.33) (27.11) (11.68) (13.62) (16.34) (19.90) (28.48) (45.06)
0.80 35.24 38.74 43.78 50.24 67.37 105.91 53.45 60.64 70.15 81.18 110.21 165.99
  (24.53) (30.09) (37.03) (44.21) (61.85) (101.43) (45.02) (53.23) (64.20) (76.11) (106.48) (163.68)
0.90 145.69 166.33 188.72 212.82 270.54 384.85 248.47 269.98 300.58 330.56 406.89 548.22
  (135.74) (159.33) (181.54) (205.44) (266.96) (378.85) (242.22) (263.48) (295.83) (330.95) (401.51) (540.64)
0.95 350.60 371.15 386.53 407.41 459.69 538.02 480.97 486.85 504.05 512.64 553.45 630.50
  (341.42) (363.93) (383.53) (412.42) (466.69) (536.35) (476.82) (482.85) (501.53) (505.43) (545.70) (625.44)
1.00 369.77 369.76 370.96 370.40 369.69 369.91 370.39 370.33 369.78 370.87 369.93 369.98
  (362.83) (368.90) (368.64) (366.71) (370.18) (363.44) (368.66) (370.85) (367.86) (371.15) (365.22) (367.99)
1.05 150.66 159.79 164.23 168.24 173.15 176.47 149.66 157.59 162.85 166.54 170.57 171.70
  (149.48) (158.80) (163.02) (165.09) (171.41) (175.42) (147.48) (156.85) (161.92) (165.29) (166.85) (172.03)
1.10 63.25 69.18 73.84 76.98 82.04 85.88 66.59 70.88 74.99 77.67 82.83 85.91
  (61.40) (67.31) (71.83) (75.06) (80.55) (84.45) (64.59) (69.23) (73.04) (76.58) (82.32) (84.79)
1.20 20.62 22.28 23.58 24.82 27.12 29.29 21.87 23.36 24.72 25.88 27.75 29.67
  (18.01) (19.78) (21.27) (22.61) (25.20) (27.90) (19.71) (21.43) (23.04) (24.20) (26.24) (28.24)
1.30 10.83 11.56 12.08 12.57 13.45 14.31 11.23 11.87 12.42 12.91 13.66 14.51
  (8.29) (9.06) (9.59) (10.23) (11.23) (12.19) (9.11) (9.87) (10.47) (11.03) (11.79) (12.86)
1.40 7.17 7.52 7.80 8.02 8.49 8.94 7.25 7.52 7.80 8.06 8.46 8.87
  (4.85) (5.12) (5.45) (5.71) (6.39) (7.05) (5.35) (5.60) (5.89) (6.26) (6.79) (7.28)
1.50 5.41 5.63 5.79 5.92 6.12 6.35 5.34 5.52 5.68 5.78 5.99 6.23
  (3.35) (3.47) (3.61) (3.74) (4.02) (4.40) (3.60) (3.71) (3.86) (3.97) (4.24) (4.56)
1.60 4.38 4.56 4.67 4.75 4.88 5.04 4.24 4.39 4.50 4.59 4.73 4.88
  (2.56) (2.61) (2.67) (2.74) (2.92) (3.17) (2.69) (2.76) (2.84) (2.92) (3.11) (3.33)
1.70 3.69 3.87 3.97 4.04 4.13 4.21 3.54 3.66 3.76 3.82 3.92 4.01
  (2.03) (2.07) (2.11) (2.16) (2.25) (2.40) (2.14) (2.17) (2.22) (2.25) (2.35) (2.49)
1.80 3.21 3.36 3.46 3.52 3.59 3.65 3.04 3.15 3.23 3.29 3.38 3.45
  (1.67) (1.66) (1.68) (1.70) (1.75) (1.89) (1.74) (1.74) (1.76) (1.78) (1.84) (1.93)
1.90 2.85 3.01 3.10 3.16 3.23 3.27 2.69 2.79 2.87 2.93 3.01 3.06
  (1.42) (1.41) (1.40) (1.40) (1.45) (1.50) (1.48) (1.48) (1.46) (1.47) (1.50) (1.55)
2.00 2.59 2.74 2.84 2.90 2.96 3.00 2.43 2.52 2.60 2.66 2.74 2.80
  (1.26) (1.24) (1.22) (1.21) (1.22) (1.26) (1.29) (1.29) (1.28) (1.28) (1.27) (1.29)
EARL 67.72 71.59 75.36 79.43 89.14 107.26 83.30 86.99 92.04 96.88 102.32 131.97

According to Tables 3, A1 and A2, the results reveal that:

  • For a fixed value of α (q), the performance of the proposed chart improves for small to moderate downward and small to large upward shifts in the process variability, as the value of q (α) increases (decreases). For example, when τ=1.10, n = 5, α=0.90 and q = 0.50, 0.60, 0.70, 0.80, 0.90 and 0.95, the ARL1 ( SDRL1) values are 74.99 (73.04), 73.84 (71.83), 69.78 (67.09), 61.31 (58.16), 44.41 (46.22) and 12.38 (31.08), respectively (see Table 3). Additionally, if τ=0.80, n = 5, α=1.50 and q = 0.50, 0.60, 0.70, 0.80, 0.90 and 0.95, then the ARL1 ( SDRL1) values are 78.60 (74.88), 57.09 (53.29), 42.03 (37.86), 31.21 (25.81), 23.83 (15.49) and 23.21 (10.56), respectively (see Table A2 in the Supplementary Material). When τ=1.10, n = 5, q = 0.80 and α=0.70, 0.80, 0.90, 1.00, 1.20 and 1.50, the corresponding ARL1 ( SDRL1) values are 44.61 (46.45), 53.84 (52.23), 61.31 (58.16), 67.38 (63.79), 76.78 (73.21) and 83.06 (79.22)(see Table 3).

  • As n increases, the sensitivity of the proposed chart improves for most of the considered (q,α) combinations and τ shifts. For example, the ARL1 values of the S2-DGWMA chart with (q = 0.90, α=0.90) at τ=1.05, are 118.07 and 81.27, when n = 5 and 9, respectively (see Tables 3 and A1 in the Supplementary Material). However, the opposite is observed, e.g. for the S2-DGWMA chart with (q = 0.90, α=0.80) at 1.30τ2.00, and the S2-DGWMA chart with (q = 0.95, α=1.00) at 1.20τ2.00.

  • Both SDRL0 and SDRL1 decrease with an increase in the sample size.

  • The S2-DGWMA chart with (q = 0.95, α=0.70) is the most efficient chart in detecting small to large upward shifts in the process dispersion.

  • The S2-DGWMA chart with (q = 0.95, α[0.70,0.80]) shows the best performance for small to moderate downward shifts.

  • The S2-DGWMA chart with ( q[0.50,0.80],α[1.20,1.50]) are preferable for moderate to large downward shifts.

  • It is more efficient in detecting small to moderate upward shifts. Particularly, the proposed chart is more sensitive in identifying small upward shifts than small downward shifts. For example, the ARL1 values of the S2-DGWMA (q = 0.90, α=0.90, L = 2.163) chart are 74.40 and 44.41 when n = 5 at τ=0.90 and 1.10, respectively (see Table 3). Additionally, the ARL1 values of the S2-DGWMA (q = 0.95, α=1.20, L = 1.828) chart are 124.08 and 88.77 when n = 5 at τ=0.95 and 1.05, respectively (see Table A2 in the Supplementary Material).

  • It is ARL-biased for small downward shifts ( 0.95τ<1.00) and n = 5, i.e. when (i) (q=0.50,α[0.70,1.50]) at ARL0200,370, (ii) (q=0.60,α[0.80,1.50]) at ARL0370 , (iii) (q[0.70,0.80],α[1.20,1.50]) at ARL0370, ( iv) (q=0.60,α[1.00,1.50]) at ARL0200 and v) (q=0.70,α=1.50) at ARL0200.

  • For fixed τ and n values, the ARL1 decreases as the ARL0 decreases. Additionally, the SDRL1 decreases with a decrease in the ARL0 value, for most of the considered τ and (q,α) cases.

  • As mentioned in Section 2, the S2-HEWMA chart is a special case of the proposed chart. Therefore, its charting statistic and the corresponding control limits are given by Equations (3) and (5), respectively, using q=1λ, α=1.00 and λ1=λ2=λ. The performance of the competing chart is also presented in Table 3, as well as Tables A1 and A2 in the Supplementary Material when λ{0.05,0.10,0.20,0.30,0.40,0.50}, q=1λ, and α=1.00. We observe that, the S2-DGWMA chart with α<1.00 is more efficient than the S2-HEWMA chart for detecting moderate downward to large upward shifts. For example, the S2-DGWMA( q=0.80,α=0.90,L=2.485) chart is better than the S2-HEWMA( λ1=0.20,λ2=0.20,L=2.517) (i.e. S2-DGWMA( q=0.80,α=1.00,L=2.517)) chart at 0.70<τ2.00 (see Table 3). Additionally, as the parameter q rises, the performance of the S2-DGWMA chart with α>1.00 improves in detecting downward shifts, compared with the competing chart. For example, the S2-DGWMA( q=0.90,α=1.20,L=2.349) chart is more efficient than the S2-HEWMA( λ1=0.10,λ2=0.10,L=2.217) chart at 0.50τ0.80 (see Table 3). It should be noted that, similar conclusions are extracted, either the sample size n or the ARL0 changes. For instance, the S2-DGWMA( q=0.80,α=0.80,L=2.4525) chart is more effective than the S2-HEWMA( λ1=0.20,λ2=0.20,L=2.515) chart at 0.80<τ2.00 (see Table A1 in the Supplementary Material). Furthermore, the S2-HEWMA( λ1=0.10,λ2=0.10,L=1.955) chart is less sensitive than the S2-DGWMA( q=0.90,α=1.50,L=2.260) chart at 0.50τ0.80 (see Table A2 in the Supplementary Material). Finally, the S2-DGWMA chart with α<1.00 has lower EARL results than the S2-HEWMA chart (see Tables 3 and A1–A2 in the Supplementary Material).

4. Performance comparisons of control charts

In the current section, we compare the performance of the proposed chart with that of the S2-GWMA, S2-EWMA, CS-EWMA, S2-TEWMA and VSI S2-EWMA charts for monitoring the process variability. For fair comparisons, it is recommended to have a similar pre-fixed ARL0 value. The control chart with the lowest ARL1 value in a certain shift τ in the process variability, can detect faster than the other control charts. Therefore, we consider two-sided asymptotic control limits for all the competing control charts, the ARL0 is set approximately equal to 370 and the sample size n is set at 5. Furthermore, we consider the cases that ARL0370 and n = 9, as well as ARL0200 and n = 5, i.e. whether the sample size or the ARL0 changes. The competing control charts are briefly described, and compared individually with the S2-DGWMA chart. Note that the control chart multipliers L of the S2-GWMA, S2-EWMA and S2-TEWMA charts, as well as the parameter HCS of the CS-EWMA chart, are selected through Monte-Carlo simulations similar to Section 3. Tables A1A3 in the Appendix present the ARL and EARL results of the S2-GWMA, S2-EWMA, CS-EWMA and S2-TEWMA charts when ARL0370 and n = 5, while Tables B1–B2, C1–C2 and D1–D2 in the Supplementary Material present the ARL and EARL results of these charts, when ARL0370 and n = 9 as well as ARL0200 and n = 5. The bold printed fonts in these Tables indicate the smallest ARL1 values for each τ. The SDRL0 values are also provided.

  • S2-DGWMA chart versus S2-GWMA chart

The plotting statistic of the S2-GWMA chart is given by

Gi=j=1i(q(j1)αqjα)Tij+1+qiαG0,i=1,2, (6)

where q[0,1) is the design parameter, α>0 is the adjustment parameter and G0=DG0 is the starting value. The asymptotic control limits of the S2-GWMA chart are given by

LCL=μT(n)LσT(n)Q,CL=μT(n),UCL=μT(n)+LσT(n)Q, (7)

where L(>0) is the control chart multiplier, Q=limiQi and Qi=j=1i(q(j1)αqjα)2, i=1,2,. It should be noted that, the S2-GWMA chart reduces to the S2-EWMA chart when q=1λ and α=1.00, where λ(0,1] is the smoothing constant of the latter chart. The S2-GWMA chart is constructed by plotting the statistic Gi versus the sample number i. The process is declared as OOC, when GiLCL or GiUCL.

According to Tables 3 and A1, the S2-DGWMA chart is more efficient than the S2-GWMA chart, as well as the S2-EWMA chart, for small shifts in the process variability. As q decreases, it becomes better for downward shifts and small to moderate upward shifts. See, for example, (i) the S2-DGWMA( q=0.90,α=1.00,L=2.217) chart versus the S2-GWMA( q=0.90,α=1.00,L=2.686) (i.e. S2-EWMA( λ=0.10,L=2.686)) chart at 0.80τ1.20, (ii) the S2-DGWMA( q=0.80,α=0.80,L=2.458) chart versus the S2-GWMA( q=0.80,α=0.80,L=2.810) chart at 0.70τ<1.00 and 1.05<τ1.20, (iii) the S2-DGWMA( q=0.70,α=1.00,L=2.677) chart versus the S2-GWMA( q=0.70,α=1.00,L=2.824) (i.e. S2-EWMA( λ=0.30,L=2.824)) chart at τ1.00, (iv) the S2-DGWMA( q=0.60,α=1.20,L=2.764) chart versus the S2-GWMA( q=0.60,α=1.20,L=2.833) chart at τ1.00 and (v) the S2-DGWMA( q=0.50,α=0.80,L=2.816) chart versus the S2-GWMA( q=0.50,α=0.80,L=2.820) chart at τ<1.00 and 1.10τ1.40 (see Tables 3 and A1). The performance of the S2-DGWMA chart enhances compared with the S2-GWMA chart for small to moderate upward shifts as the sample size n increases and the parameter q decreases. In particular, (i) the S2-DGWMA( q=0.80,α=1.00,L=2.515) chart is better than the S2-GWMA( q=0.80,α=1.00,L=2.8215) (i.e. S2-EWMA( λ=0.20,L=2.8215)) chart at 0.80τ1.20, (ii) the S2-DGWMA( q=0.70,α=0.80,L=2.666) chart is more sensitive than the S2-GWMA( q=0.70,α=0.80,L=2.8605) chart at 0.70τ1.20 and (iii) the S2-DGWMA( q=0.60,α=1.20,L=2.7855) chart is more effective than the S2-GWMA( q=0.60,α=1.20,L=2.868) chart at 0.60τ<1.00 and 1.00<τ1.30 (see Tables A1 and B1 in the Supplementary Material). In case the ARL0 decreases, the proposed chart is slightly less efficient than the S2-GWMA chart, in detecting upward shifts in the dispersion with a decrease in the parameter q. For example, the S2-DGWMA( q=0.60,α=0.70,L=2.560) chart is better than the S2-GWMA( q=0.60,α=0.70,L=2.631) chart at 0.50τ<1.00 and 1.20τ1.30, and the S2-DGWMA( q=0.50,α=0.80,L=2.620) chart is more efficient than the S2-GWMA( q=0.50,α=0.80,L=2.632) chart at 0.50τ1.00 and 1.20τ1.30 (see Tables A2 and B2 in the Supplementary Material). It should be noted that, the EARL of the proposed chart is better than that of the S2-GWMA chart for most of the examined cases.

  • S2-DGWMA chart versus CS-EWMA chart

The charting statistics of the CS-EWMA chart are given by

Mi=max[0,Mi1+μT(n)ZiK],Mi+=max[0,Mi1++ZiμT(n)K],i=1,2,, (8)

where Zi=λTi+(1λ)Zi1, λ(0,1], M0=M0+=0 are the starting values and K=KCSλ2λ ( KCS0) is the reference value. The Mi and Mi+ statistics are plotted against the decision interval H=HCSλ2λ, while the process raises an OOC signal if either Mi or Mi+ is plotted above H. Comparing Tables 3 and A2, we observe that the proposed chart is more effective than the CS-EWMA chart for moderate to large downward and small to large upward shifts in the variability. For example, the S2-DGWMA( q=0.95,α=1.20,L=2.104) chart is better than the CS-EWMA( λ=0.05,KCS=1.00,HCS=17.10) chart at 0.50τ0.80, and 1.10<τ2.00, while the corresponding EARL values are 58.48 and 58.98 (see Tables 3 and A2). Finally, similar results are observed, if the sample size increases or the ARL0 decreases. For example, the S2-DGWMA( q=0.95,α=1.20,L=2.0915) chart is more effective compared with the CS-EWMA( λ=0.05,KCS=1.00,HCS=17.85) chart at 0.50<τ0.90, and 1.20τ2.00 (see Tables A1 and C1 in the Supplementary Material). Additionally, the S2-DGWMA( q=0.95,α=1.50,L=2.070) chart is better than the CS-EWMA( λ=0.05,KCS=0.50,HCS=29.40) chart at 0.50τ0.80 and 1.20τ2.00, with the corresponding EARL values equal to 43.47 and 46.92 (see Tables A2 and C2 in the Supplementary Material).

  • S2-DGWMA chart versus S2-TEWMA chart

The plotting statistic Wi of the S2-TEWMA chart is given through the following system of equations:

{Zi=λTi+(1λ)Zi1,Yi=λZi+(1λ)Yi1,Wi=λYi+(1λ)Wi1,i=1,2,, (9)

where λ(0,1] is the smoothing constant, and W0=Y0=Z0=DG0 are the starting values. The asymptotic control limits of the S2-TEWMA chart are given by

LCL=μT(n)LσT(n)[6(1λ)6λ(2λ)5+12(1λ)4λ2(2λ)4+7(1λ)2λ3(2λ)3+λ4(2λ)2],CL=μT(n),UCL=μT(n)+LσT(n)[6(1λ)6λ(2λ)5+12(1λ)4λ2(2λ)4+7(1λ)2λ3(2λ)3+λ4(2λ)2], (10)

where L(>0) is the control chart multiplier. The S2-TEWMA chart is constructed by plotting the statistic Wi versus the sample number i and the process raises an OOC signal, when WiLCL or WiUCL. Tables 3 and A3 indicate that the S2-DGWMA chart is more efficient for upward shifts. In addition, its performance improves for downward shifts as q(λ) increases (decreases). For instance, the S2-DGWMA( q=0.70,α=0.80,L=2.663) chart is better than the S2-TEWMA( λ=0.30,L=2.5156) chart for shifts of size 0.50τ<0.70, τ=0.90 and 1.00τ2.00, while the corresponding EARL results are 62.08 and 64.99. Furthermore, the S2-DGWMA( q=0.90,α=0.90,L=2.163) chart is more efficient than the S2-TEWMA( λ=0.10,L=2.020) chart at 0.50τ0.90 and 1.00τ2.00, as well as the corresponding EARL results are 53.90 and 58.81 (see Tables 3 and A3). It should be noted that as the sample size increases, the performance of the S2-DGWMA chart slightly improves in detecting downward shifts in comparison with the S2-TEWMA chart. In particular, the S2-DGWMA( q=0.70,α=0.80,L=2.666) chart has lower ARL1 values than the S2-TEWMA( λ=0.30,L=2.5152) chart at 0.50τ<0.80, 0.90τ<1.00 and 1.00<τ2.00, while the corresponding EARL values are 45.16 and 47.45 (see Tables A1 and D1 in the Supplementary Material). Finally, similar conclusions are observed, if the ARL0 changes, e.g. the S2-DGWMA( q=0.70,α=0.80,L=2.430) chart is more sensitive than the S2-TEWMA( λ=0.30,L=2.275) chart at 0.50τ0.60, τ=0.90 and 1.00<τ2.00 (see Tables A2 and D2 in the Supplementary Material).

Tables 4 to 6 present the ‘near optimal’ combinations of the design parameters for the aforementioned charts, as well as the corresponding ARL1 values for all the considered τ shifts when (i) ARL0370 and n = 5, (ii) ARL0370 and n = 9 as well as (iii) ARL0200 and n = 5. It should be mentioned that we do not consider some parameter combinations due to the large SDRL0, e.g. the S2-DGWMA (q=0.95,α=0.70,L=3.8403), S2-GWMA (q=0.95,α=0.70,L=2.843), S2-HEWMA (λ1=0.05,λ2=0.05,L=2.003) and S2-TEWMA (λ=0.05,L=2.14537) charts (see Tables 3 and A1 – A3). According to Table 4, the S2-DGWMA chart is the most efficient in detecting small to moderate upward, and large downward shifts. Furthermore, the CS-EWMA is better for small to large downward shifts, whereas the S2-GWMA chart is the most effective for large upward shifts. Table 5 reveals that, as the sample size n increases, the S2-DGWMA chart is the most sensitive for small to moderate upward shifts, the CS-EWMA chart is the most efficient for small to moderate downward shifts, while the S2-GWMA chart is the most efficient for large upward and downward shifts. Table 6 shows that as the ARL0 decreases, the S2-DGWMA chart is the most efficient for upward shifts, whereas the CS-EWMA chart is the most effective for downward shifts. It should be noted that the S2-DGWMA and S2-TEWMA charts perform almost similarly for downward shifts. Finally, the proposed chart is more efficient than the S2-EWMA and the S2-HEWMA charts for most of the considered τ values, while it is better than the S2-GWMA for small downward to moderate upward shifts in the variability.

Table 4.

ARL values and the corresponding near optimal design combinations of the control charts at n = 5 and ARL0370.

τ S2-DGWMA S2-EWMA S2-HEWMA CS-EWMA S2-TEWMA S2-GWMA
0.50 (q=0.60,α=1.20,L=2.764) ( λ=0.20,L=2.800) ( λ1=0.40,λ2=0.40,L=2.761) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.80,α=1.50,L=2.787)
  5.57 6.26 5.69 5.79 5.65 5.68
0.60 (q=0.70,α=1.20,L=2.693) ( λ=0.20,L=2.800) ( λ1=0.30,λ2=0.30,L=2.677) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.40,L=2.6415) (q=0.90,α=1.50,L=2.699)
  8.23 9.02 8.33 8.02 8.27 8.17
0.70 (q=0.80,α=1.20,L=2.579) ( λ=0.10,L=2.686) ( λ1=0.20,λ2=0.20,L=2.517) (λ=0.30,KCS=1.00,HCS=6.61) (λ=0.30,L=2.5156) (q=0.95,α=1.50,L=2.576)
  13.59 14.81 13.62 13.07 13.50 13.32
0.80 (q=0.90,α=1.20,L=2.349) ( λ=0.10,L=2.686) ( λ1=0.20,λ2=0.20,L=2.517) (λ=0.40,KCS=0.50,HCS=11.72) (λ=0.20,L=2.332) (q=0.95,α=1.20,L=2.513)
  25.99 28.68 27.04 24.55 26.16 26.27
0.90 (q=0.90,α=0.90,L=2.163) ( λ=0.05,L=2.513) ( λ1=0.10,λ2=0.10,L=2.217) (λ=0.20,KCS=0.50,HCS=19.91) (λ=0.10,L=2.020) (q=0.95,α=1.00,L=2.513)
  74.40 81.06 75.34 68.31 74.41 81.06
0.95 (q=0.95,α=1.00,L=2.003) ( λ=0.05,L=2.513) ( λ1=0.10,λ2=0.10,L=2.217) (λ=0.50,KCS=0.10,HCS=25.82) (λ=0.10,L=2.020) (q=0.95,α=0.90,L=2.549)
  172.47 201.13 189.46 153.55 179.00 200.45
1.05 (q=0.90,α=0.80,L=2.165) ( λ=0.05,L=2.513) ( λ1=0.10,λ2=0.10,L=2.217) (λ=0.05,KCS=1.00,HCS=17.10) (λ=0.10,L=2.020) (q=0.95,α=0.90,L=2.549)
  89.39 120.60 136.49 120.27 128.47 98.08
1.10 (q=0.90,α=0.80,L=2.165) ( λ=0.05,L=2.513) ( λ1=0.10,λ2=0.10,L=2.217) (λ=0.05,KCS=1.00,HCS=17.10) (λ=0.10,L=2.020) (q=0.95,α=0.90,L=2.549)
  30.11 45.31 53.28 48.75 50.70 35.79
1.20 (q=0.90,α=0.80,L=2.165) ( λ=0.05,L=2.513) ( λ1=0.10,λ2=0.10,L=2.217) (λ=0.05,KCS=1.00,HCS=17.10) (λ=0.10,L=2.020) (q=0.95,α=0.90,L=2.549)
  10.38 15.25 18.71 21.31 19.50 12.24
1.30 (q=0.90,α=0.80,L=2.165) ( λ=0.05,L=2.513) ( λ1=0.10,λ2=0.10,L=2.217) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.40,L=2.6415) (q=0.95,α=0.90,L=2.549)
  6.28 8.73 11.23 12.92 12.80 7.14
1.40 (q=0.90,α=0.80,L=2.165) ( λ=0.05,L=2.513) ( λ1=0.40,λ2=0.40,L=2.761) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.95,α=0.90,L=2.549)
  4.66 6.17 8.02 8.47 8.35 5.08
1.50 (q=0.90,α=0.80,L=2.165) ( λ=0.05,L=2.513) ( λ1=0.50,λ2=0.50,L=2.811) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.95,α=0.90,L=2.549)
  3.79 4.84 5.78 6.36 6.15 4.01
1.60 (q=0.90,α=0.80,L=2.165) ( λ=0.05,L=2.513) ( λ1=0.50,λ2=0.50,L=2.811) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.95,α=0.90,L=2.549)
  3.25 4.04 4.59 5.19 4.97 3.31
1.70 (q=0.90,α=0.80,L=2.165) ( λ=0.50,L=2.824) ( λ1=0.50,λ2=0.50,L=2.811) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.95,α=0.90,L=2.549)
  2.87 3.45 3.82 4.43 4.24 2.84
1.80 (q=0.90,α=0.80,L=2.165) ( λ=0.50,L=2.824) ( λ1=0.50,λ2=0.50,L=2.811) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.95,α=0.90,L=2.549)
  2.61 2.91 3.29 3.89 3.71 2.51
1.90 (q=0.90,α=0.80,L=2.165) ( λ=0.50,L=2.824) ( λ1=0.50,λ2=0.50,L=2.811) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.95,α=0.90,L=2.549)
  2.41 2.54 2.93 3.51 3.35 2.27
2.00 (q=0.90,α=0.80,L=2.165) ( λ=0.50,L=2.824) ( λ1=0.50,λ2=0.50,L=2.811) (λ=0.50,KCS=1.00,HCS=4.35) (λ=0.50,L=2.731) (q=0.95,α=0.90,L=2.549)
  2.24 2.26 2.66 3.21 3.08 2.08

Table 6.

ARL values and the corresponding near optimal design combinations of the control charts at n = 5 and ARL0200.

τ S2-DGWMA S2-EWMA S2-HEWMA CS-EWMA S2-TEWMA S2-GWMA
0.50 (q=0.60,α=1.20,L=2.557) ( λ=0.30,L=2.634) ( λ1=0.50,λ2=0.50,L=2.6105) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.80,α=1.50,L=2.585)
  4.97 5.45 5.05 5.17 5.12 4.95
0.60 (q=0.70,α=1.20,L=2.473) ( λ=0.20,L=2.592) ( λ1=0.40,λ2=0.40,L=2.5486) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.90,α=1.50,L=2.478)
  7.19 7.85 7.29 7.11 7.20 7.18
0.70 (q=0.80,α=1.20,L=2.337) ( λ=0.10,L=2.452) ( λ1=0.30,λ2=0.30,L=2.4437) (λ=0.30,KCS=1.00,HCS=5.17) ( λ=0.40,L=2.416) (q=0.95,α=1.50,L=2.334)
  11.58 13.02 11.70 11.40 11.76 11.53
0.80 (q=0.80,α=1.00,L=2.270) ( λ=0.10,L=2.452) ( λ1=0.20,λ2=0.20,L=2.27) (λ=0.40,KCS=0.50,HCS=9.67) ( λ=0.20,L=2.07) (q=0.95,α=1.20,L=2.266)
  22.11 23.82 22.11 20.99 22.41 22.44
0.90 (q=0.95,α=1.20,L=1.828) ( λ=0.05,L=2.266) ( λ1=0.10,λ2=0.10,L=1.955) (λ=0.20,KCS=0.50,HCS=15.47) ( λ=0.10,L=1.756) (q=0.95,α=1.20,L=2.266)
  58.38 63.63 58.45 54.51 60.64 63.00
0.95 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.10,λ2=0.10,L=1.955) (λ=0.40,KCS=0.10,HCS=23.50) ( λ=0.10,L=1.756) (q=0.95,α=1.00,L=2.266)
  123.83 133.44 125.98 111.22 123.35 133.44
1.05 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.10,λ2=0.10,L=1.955) (λ=0.05,KCS=1.00,HCS=10.62) ( λ=0.10,L=1.756) (q=0.90,α=0.70,L=2.566)
  55.69 77.13 88.95 81.27 83.01 62.10
1.10 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.10,λ2=0.10,L=1.955) (λ=0.05,KCS=1.00,HCS=10.62) ( λ=0.10,L=1.756) (q=0.90,α=0.70,L=2.566)
  19.51 32.37 38.79 35.97 35.77 25.29
1.20 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.10,λ2=0.10,L=1.955) (λ=0.05,KCS=1.00,HCS=10.62) ( λ=0.10,L=1.756) (q=0.95,α=0.90,L=2.321)
  6.83 11.82 14.75 16.19 14.61 9.33
1.30 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.10,λ2=0.10,L=1.955) (λ=0.40,KCS=1.00,HCS=4.24) ( λ=0.10,L=1.756) (q=0.95,α=0.90,L=2.321)
  4.05 6.99 9.19 11.01 9.79 5.63
1.40 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.10,λ2=0.10,L=1.955) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.95,α=0.90,L=2.321)
  3.01 5.03 6.92 7.41 7.29 4.07
1.50 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.50,λ2=0.50,L=2.6105) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.95,α=0.90,L=2.321)
  2.43 4.00 5.17 5.64 5.53 3.22
1.60 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.50,λ2=0.50,L=2.6105) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.95,α=0.90,L=2.321)
  2.08 3.32 4.14 4.63 4.52 2.69
1.70 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.50,λ2=0.50,L=2.6105) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.90,α=0.70,L=2.566)
  1.85 2.87 3.47 3.96 3.88 2.33
1.80 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.50,λ2=0.50,L=2.6105) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.90,α=0.70,L=2.566)
  1.68 2.55 3.02 3.49 3.42 2.06
1.90 (q=0.90,α=0.80,L=1.985) ( λ=0.05,L=2.266) ( λ1=0.50,λ2=0.50,L=2.6105) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.90,α=0.70,L=2.566)
  1.56 2.32 2.70 3.16 3.11 1.87
2.00 (q=0.90,α=0.80,L=1.985) ( λ=0.50,L=2.638) ( λ1=0.50,λ2=0.50,L=2.6105) (λ=0.50,KCS=1.00,HCS=3.578) ( λ=0.50,L=2.516) (q=0.90,α=0.70,L=2.566)
  1.47 2.09 2.46 2.91 2.88 1.72

Table 5.

ARL values and the corresponding near optimal design combinations of the control charts at n = 9 and ARL0370.

τ S2-DGWMA S2-EWMA S2-HEWMA CS-EWMA S2-TEWMA S2-GWMA
0.50 (q=0.50,α=1.50,L=2.8395) ( λ=0.40,L=2.8645) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.60,α=1.50,L=2.870)
  3.15 3.21 3.29 3.81 3.80 2.97
0.60 (q=0.50,α=1.20,L=2.837) ( λ=0.30,L=2.854) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.80,α=1.50,L=2.8137)
  4.44 4.70 4.47 4.86 4.72 4.42
0.70 (q=0.70,α=1.20,L=2.708) ( λ=0.20,L=2.8215) ( λ1=0.40,λ2=0.40,L=2.781) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.90,α=1.50,L=2.7118)
  7.31 7.72 7.35 7.16 7.33 7.27
0.80 (q=0.80,α=1.00,L=2.515) ( λ=0.10,L=2.690) ( λ1=0.20,λ2=0.20,L=2.515) (λ=0.30,KCS=1.00,HCS=7.004) ( λ=0.30,L=2.5152) (q=0.95,α=1.50,L=2.5762)
  14.40 15.22 14.40 14.02 14.49 14.34
0.90 (q=0.90,α=1.00,L=2.207) ( λ=0.05,L=2.494) ( λ1=0.10,λ2=0.10,L=2.207) (λ=0.30,KCS=0.50,HCS=15.46) ( λ=0.20,L=2.327) (q=0.95,α=1.00,L=2.494)
  41.90 44.26 41.90 40.20 44.50 44.26
0.95 (q=0.95,α=1.00,L=1.902) ( λ=0.05,L=2.494) ( λ1=0.05,λ2=0.05,L=1.902) (λ=0.10,KCS=0.50,HCS=31.78) ( λ=0.10,L=1.996) (q=0.95,α=0.90,L=2.5115)
  109.11 119.52 109.11 101.19 110.96 119.46
1.05 (q=0.90,α=0.70,L=2.114) ( λ=0.05,L=2.494) ( λ1=0.05,λ2=0.05,L=1.902) (λ=0.05,KCS=1.00,HCS=17.85) ( λ=0.10,L=1.996) (q=0.95,α=0.80,L=2.5719)
  42.26 83.29 69.23 82.64 88.21 56.41
1.10 (q=0.90,α=0.70,L=2.114) ( λ=0.05,L=2.494) ( λ1=0.05,λ2=0.05,L=1.902) (λ=0.05,KCS=1.00,HCS=17.85) ( λ=0.10,L=1.996) (q=0.95,α=0.80,L=2.5719)
  14.85 28.79 25.36 33.52 33.52 20.06
1.20 (q=0.90,α=0.70,L=2.114) ( λ=0.05,L=2.494) ( λ1=0.05,λ2=0.05,L=1.902) (λ=0.30,KCS=1.00,HCS=7.004) ( λ=0.30,L=2.5152) (q=0.95,α=0.80,L=2.5719)
  6.20 10.76 11.66 14.03 13.91 7.88
1.30 (q=0.90,α=0.70,L=2.114) ( λ=0.05,L=2.494) ( λ1=0.40,λ2=0.40,L=2.781) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  4.12 6.56 7.43 7.76 7.64 4.84
1.40 (q=0.90,α=0.70,L=2.114) ( λ=0.30,L=2.854) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  3.18 4.66 4.88 5.39 5.19 3.52
1.50 (q=0.90,α=0.70,L=2.114) ( λ=0.40,L=2.8645) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  2.66 3.43 3.68 4.26 4.06 2.80
1.60 (q=0.90,α=0.70,L=2.114) ( λ=0.50,L=2.8599) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  2.31 2.69 3.02 3.59 3.43 2.35
1.70 (q=0.90,α=0.70,L=2.114) ( λ=0.50,L=2.8599) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  2.06 2.24 2.61 3.15 3.01 2.03
1.80 (q=0.90,α=0.70,L=2.114) ( λ=0.50,L=2.8599) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  1.87 1.93 2.33 2.84 2.74 1.81
1.90 (q=0.90,α=0.70,L=2.114) ( λ=0.50,L=2.8599) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  1.72 1.72 2.11 2.61 2.54 1.64
2.00 (q=0.90,α=0.70,L=2.114) ( λ=0.50,L=2.8599) ( λ1=0.50,λ2=0.50,L=2.837) (λ=0.50,KCS=1.00,HCS=4.657) ( λ=0.50,L=2.749) (q=0.95,α=0.80,L=2.5719)
  1.60 1.57 1.95 2.44 2.39 1.51
  • S2-DGWMA chart versus VSI S2-EWMA chart

Furthermore, we compare the performance of the proposed chart with that of the VSI S2-EWMA chart, that is, briefly described as follows. The sampling interval, and particularly, the time between two successive samples Ti and Ti+1, depends on the current value of the Zi=λTi+(1λ)Zi1, λ(0,1] statistic. A longer sampling interval hL is utilized when the Zi statistic lies in the region RL=[LWL,UWL], defined as

LWL=μT(n)WσT(n)λ2λ,UWL=μT(n)+WσT(n)λ2λ, (11)

where W is the warning limit coefficient that establishes the proportion of times that the Zi statistic lies within the long and short sampling regions. Similarly, the short sampling interval hS is utilized when the control statistic lies within the region RS=[LCL,LWL][UWL,UCL]. The process is declared as OOC, if the statistic Zi lies outside the range [LCL,UCL]. Castagliola et al. [14] used the Average Time to Signal (ATS), that is, the expected value of the time from the start of the process to the time when the chart signals, as a performance measure. For a Fixed Sampling Interval (FSI) model, the ATS is defined as: ATSFSI=h0×ARLFSI. In the case of a VSI model, the ATS is given by: ATSVSI=E(h)×ARLVSI, where E(h) is the expected value of the sampling interval. For fair comparisons between a VSI chart and a FSI chart, we assume that hS=hL=h0=1. Therefore, the IC average sampling interval for a VSI chart should be E0(h)=1. Moreover, if ARL0370, then ATS0370 for both the FSI and VSI charts. Table 2 and 3 of Castagliola et al. [14] present the minimal ATS results of the VSI S2-EWMA chart when n = 5 and 9, that they were obtained through a Markov Chain approach. Comparing Tables 4 and 5 above, with Tables 2 and 3 of Castagliola et al. [14], we observe that the proposed chart is more efficient than the VSI S2-EWMA chart for small shifts, and vice versa for the rest range of shifts.

5. Illustrative example

In the current section, we demonstrate the application of the S2-DGWMA control chart against the S2-EWMA, S2-HEWMA, S2-TEWMA and S2-GWMA control charts considering the real data given in DeVor et al. [20]. The aforementioned dataset is widely used by numerous scholars, such as Chen et al. [17] and Tariq et al. [44]. These data are measurements of the inside diameter of cylinder bores in an engine block. Table 7 shows the data for the first 35 samples, with sample size n = 5. It should be noted that each observation in this table is recorded in the last three digits of its actual measurement. For instance, if the actual measurements are 3.5205 and 3.5202, then the corresponding observations will be 205 and 202. The estimated values of the process mean and standard deviation are 200.251 and 3.306, respectively.

Table 7.

Data for the inside diameter of cylinder bores and charting statistics.

i X1 X2 X3 X4 X5 Si2 Ti S2-EWMA S2-HEWMA S2-TEWMA S2-GWMA S2-DGWMA
1 205 202 204 207 205 3.300 −1.146 0.143 0.208 0.211 0.143 0.208
2 202 196 201 198 202 7.200 −0.357 0.118 0.203 0.210 0.142 0.204
3 201 202 199 197 196 6.500 −0.480 0.088 0.197 0.210 0.126 0.200
4 205 203 196 201 197 14.800 0.685 0.118 0.193 0.209 0.170 0.199
5 199 196 201 200 195 6.700 −0.444 0.090 0.188 0.208 0.136 0.196
6 203 198 192 217 196 93.700 4.343 0.303 0.194 0.207 0.359 0.204
7 202 202 198 203 202 3.800 −1.029 0.236 0.196 0.207 0.220 0.205
8 197 196 196 200 204 11.800 0.326 0.241 0.198 0.206 0.233 0.206
9 199 200 204 196 202 9.200 −0.035 0.227 0.200 0.206 0.216 0.207
10 202 196 204 195 197 15.700 0.782 0.255 0.202 0.206 0.247 0.209
11 205 204 202 208 205 4.700 −0.832 0.200 0.202 0.206 0.183 0.207
12 200 201 199 200 201 0.700 −1.873 0.097 0.197 0.205 0.096 0.202
13 205 196 201 197 198 13.300 0.512 0.117 0.193 0.205 0.155 0.199
14 202 199 200 198 200 2.200 −1.427 0.040 0.185 0.204 0.080 0.193
15 200 200 201 205 201 4.300 −0.918 −0.008 0.176 0.202 0.061 0.187
16 201 187 209 202 200 63.700 3.502 0.168 0.175 0.201 0.261 0.191
17 202 202 204 198 203 5.200 −0.729 0.123 0.173 0.199 0.162 0.189
18 201 198 204 201 201 4.500 −0.874 0.073 0.168 0.198 0.119 0.186
19 207 206 194 197 201 31.500 2.052 0.172 0.168 0.196 0.234 0.188
20 200 204 198 199 199 5.500 −0.669 0.130 0.166 0.195 0.160 0.187
21 203 200 204 199 200 4.700 −0.832 0.082 0.162 0.193 0.121 0.183
22 196 203 197 201 194 13.700 0.560 0.106 0.159 0.192 0.162 0.182
23 197 199 203 200 196 7.500 −0.306 0.085 0.155 0.190 0.136 0.180
24 201 197 196 199 207 19.000 1.110 0.136 0.154 0.188 0.194 0.181
25 204 196 201 199 197 10.300 0.125 0.136 0.153 0.186 0.177 0.181
26 206 206 199 200 203 10.700 0.180 0.138 0.153 0.185 0.176 0.180
27 204 203 199 199 197 8.800 −0.096 0.126 0.151 0.183 0.162 0.179
28 199 201 201 194 200 8.500 −0.143 0.113 0.149 0.181 0.151 0.178
29 201 196 197 204 200 10.300 0.125 0.113 0.148 0.180 0.157 0.177
30 203 206 201 196 201 13.300 0.512 0.133 0.147 0.178 0.177 0.177
31 203 197 199 197 201 6.800 −0.427 0.105 0.145 0.176 0.142 0.175
32 197 194 199 200 199 5.700 −0.630 0.069 0.141 0.174 0.114 0.172
33 200 201 200 197 200 2.300 −1.400 −0.005 0.134 0.172 0.054 0.166
34 199 199 201 201 201 1.200 −1.714 −0.090 0.123 0.170 −0.003 0.158
35 200 204 197 197 199 8.300 −0.174 −0.094 0.112 0.167 0.030 0.151

Assuming ARL0370, we construct the S2-EWMA, S2-HEWMA, S2-TEWMA, S2-GWMA and S2-DGWMA control charts with asymptotic control limits and design parameters (λ,L)=(0.05,2.513), (λ1,λ2,L)=(0.05,0.05,2.003), (λ,L)=(0.05,2.14537), (q,α,L)=(0.95,0.70,2.843) and (q,α,L)=(0.95,0.70,3.8403), respectively. It should be noted that, the control chart multipliers are obtained through Monte-Carlo simulations, so that ARL0370 and n = 5.

The charting statistics of these charts are presented in Table 7, as well. Figures 1– 4 plot the S2-EWMA, S2-HEWMA, S2-TEWMA, S2-GWMA control charts, whereas the proposed S2-DGWMA chart is displayed in Figure 5. We observe that the S2-DGWMA chart triggers an OOC signal at the 1, 10 and 11 samples, the S2-GWMA chart at the 6th sample, while the remaining charts fail to detect any shift.

Figure 2.

Figure 2.

The S2-HEWMA control chart for the cylinder diameter data.

Figure 3.

Figure 3.

The S2-TEWMA control chart for the cylinder diameter data.

Figure 1.

Figure 1.

The S2-EWMA control chart for the cylinder diameter data.

Figure 4.

Figure 4.

The S2-GWMA control chart for the cylinder diameter data.

Figure 5.

Figure 5.

The S2-DGWMA control chart for the cylinder diameter data.

6. Concluding remarks

In the present article, we develop a new memory-type control chart for monitoring both upward and downward shifts in the process variability. The proposed chart extends the S2-GWMA chart to the S2-DGWMA chart by applying a three-parameter logarithmic transformation to the S2 on the DGWMA control charting scheme. The proposed chart is evaluated through the ARL and SDRL measures, using asymptotic control limits. The results indicate that for a fixed value of the α (q) parameter, the ARL performance of the S2-DGWMA chart improves for small to moderate downward and small to large upward shifts in the process dispersion, as the value of q (α) increases (decreases). Generally, as the value of the sample size increases, the sensitivity of the proposed chart enhances. Furthermore, the S2-DGWMA chart with (q = 0.95, α=0.70) is efficient in detecting small to large upward shifts in the process variability, the S2-DGWMA chart with (q = 0.95, α[0.70,0.80]) is effective for small to moderate downward shifts, while the S2-DGWMA chart with ( q[0.50,0.80], α[1.20,1.50]) is recommended for moderate to large downward shifts.

Moreover, the S2-DGWMA chart is compared with several well-known memory-type control charts for monitoring the process variability. The results indicate that the S2-DGWMA chart is more effective in detecting small shifts in the process variability, and particularly, more efficient in identifying upward shifts. Specifically, the proposed chart with α<1.00 is more efficient than the S2-HEWMA chart for detecting moderate downward to large upward shifts, while the performance of the S2-DGWMA chart with α>1.00 improves in detecting downward shifts against the S2-HEWMA chart as q rises. It is more efficient than the S2-EWMA and S2-GWMA charts for downward to moderate upward shifts. The S2-DGWMA chart is better than the CS-EWMA chart for large downward and all the considered upward shifts, while it is better than the S2-TEWMA chart for upward shifts. It should be noted that, the VSI S2-EWMA chart is less sensitive than the S2-DGWMA chart for small shifts, whereas the opposite is observed for the remaining considered shifts in the variability. Furthermore, an illustrative example is displayed to explain the application of the proposed chart. Consequently, our findings indicate that the proposed chart is a reliable alternate control chart that quality practitioners should utilize for monitoring the process variability. For future research, it would be interesting to investigate the VSI version of the S2-DGWMA chart.

Supplementary Material

Supplemental Material

Acknowledgements

The authors would like to thank the Editor and the referees for their useful comments, which resulted in improving the quality of this article.

Appendix.

Table A1.

ARL and EARL values of the S2-GWMA control chart using asymptotic control limits at n = 5 and ARL0370.

  q = 0.95 0.90
  α=0.70 0.80 0.90 1.00 1.20 1.50 0.70 0.80 0.90 1.00 1.20 1.50
τ L = 2.843 2.641 2.549 2.513 2.513 2.576 2.767 2.721 2.695 2.686 2.683 2.699
0.50 17.15 13.43 11.35 10.02 8.38 7.03 10.58 9.13 8.17 7.51 6.61 5.86
0.60 22.97 17.62 14.63 12.74 10.46 8.79 14.41 12.25 10.86 9.88 8.70 8.17
0.70 33.77 25.21 20.60 17.84 14.65 13.32 21.70 18.22 16.14 14.81 13.79 15.25
0.80 57.21 42.18 34.23 29.70 26.27 29.89 39.01 32.78 29.70 28.68 31.21 43.43
0.90 128.55 98.48 85.16 81.06 86.81 122.16 105.11 95.36 95.37 102.47 126.43 183.94
0.95 251.83 212.83 200.45 201.13 226.88 290.13 255.41 244.36 249.36 264.98 304.82 370.00
1.00 369.33 370.15 370.03 370.69 370.53 369.53 370.98 370.69 370.13 370.24 370.01 370.06
  (666.40) (491.30) (415.79) (382.43) (372.17) (368.53) (423.42) (391.22) (375.63) (371.24) (368.35) (368.46)
1.05 44.20 72.32 98.08 120.60 147.93 172.21 93.13 113.64 130.41 144.95 162.25 173.34
1.10 15.72 24.70 35.79 45.31 58.74 73.80 34.30 43.49 51.38 57.77 68.51 79.99
1.20 6.30 8.93 12.24 15.25 19.51 23.62 12.18 14.87 17.09 19.00 22.03 25.50
1.30 4.01 5.41 7.14 8.73 10.82 12.49 7.06 8.33 9.42 10.30 11.63 12.87
1.40 2.96 3.91 5.08 6.17 7.57 8.48 4.96 5.78 6.47 7.02 7.76 8.38
1.50 2.40 3.09 4.01 4.84 5.93 6.55 3.81 4.44 4.97 5.40 5.90 6.24
1.60 2.05 2.57 3.31 4.04 4.95 5.50 3.13 3.63 4.08 4.44 4.83 5.10
1.70 1.81 2.23 2.84 3.47 4.30 4.80 2.65 3.07 3.46 3.79 4.16 4.37
1.80 1.65 1.99 2.51 3.07 3.83 4.31 2.32 2.68 3.03 3.31 3.66 3.86
1.90 1.53 1.81 2.27 2.77 3.47 3.95 2.08 2.39 2.70 2.97 3.30 3.48
2.00 1.44 1.68 2.08 2.54 3.20 3.67 1.91 2.17 2.46 2.72 3.04 3.24
EARL 57.53 53.12 52.70 53.92 57.61 65.71 56.44 56.16 57.45 59.76 65.31 75.59
  q = 0.80 0.70
  α=0.70 0.80 0.90 1.00 1.20 1.50 0.70 0.80 0.90 1.00 1.20 1.50
τ L = 2.815 2.810 2.805 2.800 2.790 2.787 2.819 2.824 2.825 2.824 2.825 2.823
0.50 8.02 7.20 6.66 6.26 5.76 5.68 7.59 6.95 6.53 6.27 6.14 6.90
0.60 11.46 10.27 9.50 9.02 8.79 10.18 11.70 10.87 10.47 10.44 11.47 15.60
0.70 18.59 16.94 16.24 16.21 17.83 25.19 21.62 21.07 21.75 23.43 29.77 46.36
0.80 39.22 37.93 39.48 42.86 54.23 84.63 59.63 63.03 69.43 78.84 103.45 162.67
0.90 152.24 159.89 173.13 191.83 234.03 325.56 309.26 318.81 331.22 351.18 410.52 547.55
0.95 393.46 390.11 394.51 407.17 432.78 499.81 610.02 576.45 556.01 560.35 578.32 636.50
1.00 370.93 369.42 370.07 370.13 370.80 370.22 370.55 370.06 370.43 370.83 370.05 370.97
  (379.35) (368.81) (367.04) (366.36) (370.32) (370.00) (373.73) (373.35) (374.46) (372.75) (369.57) (369.43)
1.05 122.84 136.02 145.61 154.57 163.53 171.59 132.76 141.03 148.12 153.10 163.39 169.55
1.10 50.94 57.27 62.29 67.50 74.66 81.86 57.91 62.63 66.73 70.78 77.14 83.38
1.20 17.22 18.91 20.33 21.72 24.37 27.37 19.52 21.01 22.24 23.49 25.91 28.65
1.30 9.30 10.02 10.68 11.30 12.30 13.54 10.24 10.81 11.35 11.83 12.78 14.06
1.40 6.23 6.66 7.01 7.33 7.81 8.44 6.69 6.98 7.22 7.47 7.98 8.56
1.50 4.67 4.99 5.24 5.45 5.73 6.06 4.89 5.09 5.28 5.44 5.71 6.01
1.60 3.74 4.00 4.22 4.39 4.59 4.81 3.88 4.02 4.16 4.28 4.48 4.72
1.70 3.13 3.34 3.52 3.68 3.88 4.02 3.21 3.34 3.45 3.55 3.70 3.86
1.80 2.69 2.88 3.05 3.19 3.36 3.47 2.75 2.86 2.95 3.04 3.17 3.31
1.90 2.38 2.55 2.70 2.83 2.99 3.11 2.42 2.52 2.60 2.68 2.80 2.93
2.00 2.15 2.30 2.44 2.55 2.73 2.85 2.18 2.26 2.34 2.41 2.53 2.65
EARL 67.99 69.34 71.69 75.00 82.07 97.28 92.13 92.86 94.68 98.35 108.37 131.05
  q = 0.60 0.50
  α=0.70 0.80 0.90 1.00 1.20 1.50 0.70 0.80 0.90 1.00 1.20 1.50
τ L = 2.820 2.825 2.828 2.831 2.833 2.833 2.819 2.820 2.822 2.824 2.827 2.835
0.50 8.37 7.81 7.51 7.47 7.94 10.12 11.31 10.96 11.03 11.56 13.66 20.34
0.60 14.67 14.26 14.54 15.45 18.73 28.34 26.73 27.79 29.96 33.46 42.92 69.61
0.70 34.87 36.89 40.48 45.41 59.69 93.99 97.35 104.48 114.60 127.46 161.12 253.17
0.80 135.40 146.34 159.36 177.42 223.29 332.67 516.75 506.50 517.21 545.51 629.46 898.16
0.90 747.04 705.81 696.21 710.79 761.47 825.19 2052.45 1791.33 1630.09 1547.88 1488.31 1621.76
0.95 893.25 832.74 785.13 765.36 740.63 754.80 1054.77 991.54 952.51 920.53 873.35 872.58
1.00 370.47 370.07 370.57 370.52 370.67 370.79 369.59 368.52 370.37 370.10 368.68 370.39
  (372.45) (369.29) (373.66) (370.69) (370.90) (374.10) (372.40) (369.61) (373.18) (371.83) (370.31) (366.81)
1.05 138.98 144.25 149.65 154.07 160.17 166.61 146.59 148.39 150.91 154.23 157.94 164.40
1.10 64.33 67.64 71.46 73.72 79.08 84.00 70.87 72.96 75.00 77.23 80.76 84.94
1.20 21.89 22.92 23.97 25.16 26.94 29.06 24.21 25.04 25.78 26.64 27.91 29.94
1.30 11.12 11.54 12.00 12.44 13.32 14.42 12.09 12.38 12.69 13.05 13.73 14.73
1.40 7.08 7.30 7.49 7.70 8.13 8.68 7.54 7.65 7.82 7.99 8.35 8.85
1.50 5.07 5.20 5.37 5.50 5.73 6.06 5.30 5.40 5.49 5.59 5.81 6.13
1.60 3.97 4.07 4.16 4.26 4.43 4.65 4.09 4.14 4.20 4.27 4.42 4.63
1.70 3.26 3.33 3.40 3.48 3.60 3.77 3.33 3.37 3.40 3.45 3.55 3.69
1.80 2.77 2.84 2.89 2.95 3.05 3.18 2.80 2.83 2.87 2.91 2.98 3.09
1.90 2.43 2.49 2.54 2.60 2.68 2.79 2.45 2.48 2.51 2.54 2.60 2.70
2.00 2.18 2.23 2.27 2.32 2.40 2.51 2.19 2.21 2.23 2.26 2.31 2.39
EARL 148.27 144.69 144.67 148.14 158.88 181.35 307.96 284.54 272.87 270.05 277.13 328.66

SDRL 0 values in the parenthesis.

Table A2.

ARL and EARL values of the CS-EWMA control chart using asymptotic control limits at n = 5 and ARL0370.

  λ=0.05 0.10 0.20 0.30 0.40 0.50
  KCS=0.10 0.50 1.00 0.10 0.50 1.00 0.10 0.50 1.00 0.10 0.50 1.00 0.10 0.50 1.00 0.10 0.50 1.00
τ HCS=94 43.4 17.1 69.2 30.58 12.81 48.1 19.91 8.74 37.52 14.77 6.61 30.67 11.72 5.28 25.82 9.62 4.35
0.50 28.67 20.76 15.64 22.01 14.98 11.26 17.45 10.90 8.23 15.47 9.07 6.94 14.25 8.02 6.22 13.40 7.32 5.79
0.60 33.09 24.14 18.48 25.71 17.59 13.46 20.81 13.06 10.13 18.73 11.09 8.82 17.43 10.01 8.22 16.51 9.31 8.02
0.70 40.29 29.70 23.35 31.93 22.08 17.46 26.62 17.05 13.96 24.42 15.00 13.07 23.00 13.97 13.22 21.98 13.39 14.10
0.80 54.20 40.83 33.62 44.52 31.68 27.00 38.85 26.47 25.22 36.51 24.86 27.25 34.89 24.55 31.88 33.69 24.88 38.72
0.90 94.67 77.59 73.74 83.70 68.84 73.30 77.82 68.31 89.84 75.30 72.80 111.50 73.42 79.65 142.50 72.05 88.40 180.87
0.95 173.43 161.60 171.05 161.90 160.08 186.07 156.51 173.30 234.46 154.92 191.27 280.86 154.08 212.51 326.15 153.55 236.82 376.60
1.00 370.67 370.64 369.49 370.23 370.92 370.66 369.25 369.87 370.33 370.04 370.42 370.21 370.58 370.57 369.59 369.76 370.51 370.91
  (273.46) (348.29) (371.74) (275.23) (346.77) (360.79) (284.39) (350.83) (360.39) (293.61) (355.98) (363.30) (304.43) (355.84) (363.17) (309.70) (358.66) (366.99)
1.05 139.09 121.31 120.27 147.57 135.55 143.51 149.81 144.66 161.96 149.64 150.11 168.46 148.33 156.14 170.87 147.37 159.89 170.44
1.10 74.29 55.03 48.75 76.43 59.50 58.22 76.19 62.19 67.08 74.87 63.88 72.70 73.39 66.02 75.53 71.94 67.77 77.02
1.20 43.08 28.94 21.31 40.63 27.38 22.41 38.44 25.62 23.14 37.07 24.74 23.72 35.85 24.35 25.56 34.79 24.17 25.00
1.30 33.05 21.76 15.00 29.56 19.10 14.33 26.73 16.60 13.43 25.27 15.31 13.06 24.16 14.58 12.97 23.27 14.11 12.92
1.40 27.83 18.27 12.26 24.08 15.42 11.10 21.04 12.78 9.78 19.56 11.45 9.11 18.52 10.67 8.71 17.73 10.11 8.47
1.50 24.56 16.13 10.68 20.79 13.28 9.36 17.71 10.69 7.91 16.24 9.38 7.13 15.23 8.59 6.67 14.50 8.03 6.36
1.60 22.29 14.65 9.62 18.56 11.85 8.25 15.53 9.35 6.79 14.08 8.07 6.01 13.13 7.30 5.52 12.42 6.76 5.19
1.70 20.59 13.55 8.84 16.95 10.83 7.47 13.97 8.42 6.03 12.56 7.19 5.26 11.62 6.44 4.77 10.95 5.92 4.43
1.80 19.26 12.69 8.24 15.72 10.05 6.89 12.81 7.72 5.49 11.41 6.54 4.73 10.51 5.82 4.24 9.87 5.31 3.89
1.90 18.20 12.00 7.77 14.73 9.43 6.43 11.90 7.18 5.06 10.53 6.04 4.32 9.65 5.35 3.85 9.02 4.85 3.51
2.00 17.31 11.43 7.39 13.94 8.93 6.06 11.17 6.75 4.73 9.83 5.65 4.01 8.96 4.97 3.55 8.35 4.48 3.21
EARL 81.27 66.29 58.98 74.65 61.64 58.35 69.79 58.90 60.85 67.51 58.61 64.41 65.86 59.43 69.09 64.54 60.75 74.66

SDRL 0 values in the parenthesis.

Table A3.

ARL and EARL values of the S2-TEWMA control chart using asymptotic control limits at n = 5 and ARL0370.

  λ=0.05 0.10 0.20 0.30 0.40 0.50
τ L = 2.14537 2.0200 2.3320 2.5156 2.6415 2.7310
0.50 33.68 18.09 10.38 7.63 6.28 5.65
0.60 35.37 20.37 12.05 9.28 8.27 8.41
0.70 36.45 24.20 15.44 13.50 14.15 17.00
0.80 38.71 32.69 26.16 28.94 37.06 51.14
0.90 56.69 74.41 87.55 114.90 155.88 214.61
0.95 124.91 179.00 226.24 277.58 334.77 400.90
1.00 369.17 370.41 370.57 370.21 370.50 370.37
  (788.14) (378.90) (361.60) (367.79) (369.08) (370.67)
1.05 59.99 128.47 159.59 171.05 174.21 172.89
1.10 16.65 50.70 65.37 73.09 78.06 80.44
1.20 4.88 19.50 22.28 23.83 24.96 25.99
1.30 2.79 12.95 13.05 12.82 12.80 13.02
1.40 1.99 10.40 9.73 8.93 8.54 8.35
1.50 1.61 9.04 8.05 7.05 6.49 6.15
1.60 1.41 8.16 7.06 6.00 5.37 4.97
1.70 1.29 7.53 6.40 5.33 4.67 4.24
1.80 1.21 7.06 5.91 4.84 4.17 3.71
1.90 1.16 6.69 5.54 4.48 3.82 3.35
2.00 1.12 6.40 5.24 4.20 3.54 3.08
EARL 47.55 58.81 60.76 64.99 71.35 80.19

SDRL 0 values in the parenthesis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • 1.Abbas N., Riaz M., and Does R.J.M.M., CS-EWMA chart for monitoring process dispersion, Qual. Reliab. Eng. Int. 29 (2013), pp. 653–663. [Google Scholar]
  • 2.Abbasi S.A., Nassar S.H., Aldosari M.M., and Adeoti O.A., Efficient homogeneously weighted dispersion control charts with an application to distillation process, Qual. Reliab. Eng. Int. 37 (2021), pp. 3221–3241. [Google Scholar]
  • 3.Abbasi S.A., Riaz M., Miller A., Ahmad S., and Nazir H.Z., EWMA dispersion control charts for normal and non-normal processes, Qual. Reliab. Eng. Int. 31 (2015), pp. 1691–1704. [Google Scholar]
  • 4.Alevizakos V., Chatterjee K., and Koukouvinos C., The triple exponentially weighted moving average control chart, Qual. Technol. Quant. Manag. 18 (2021), pp. 326–354. [Google Scholar]
  • 5.Alevizakos V., Chatterjee K., Koukouvinos C., and Lappa A., A S2-GWMA control chart for monitoring the process variability, Qual. Eng. 33 (2021), pp. 533–551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Alevizakos V., Koukouvinos C., and Chatterjee K., A nonparametric double generally weighted moving average signed-rank control chart for monitoring process location, Qual. Reliab. Eng. Int. 36 (2020), pp. 2441–2458. [Google Scholar]
  • 7.Alevizakos V., Koukouvinos C., and Lappa A., Monitoring of time between events with a double generally weighted moving average control chart, Qual. Reliab. Eng. Int. 35 (2019), pp. 685–710. [Google Scholar]
  • 8.Ali R. and Haq A., New memory-type dispersion control charts, Qual. Reliab. Eng. Int. 33 (2017), pp. 2131–2149. [Google Scholar]
  • 9.Ali R. and Haq A., New GWMA-CUSUM control chart for monitoring the process dispersion, Qual. Reliab. Eng. Int. 34 (2018), pp. 997–1028. [Google Scholar]
  • 10.Arshad A., Noor-ul-Amin M., and Hanif M., Function-based adaptive exponentially weighted moving average dispersion control chart, Qual. Reliab. Eng. Int. 37 (2021), pp. 2685–2698. [Google Scholar]
  • 11.Castagliola P., A new S2-EWMA control chart for monitoring the process variance, Qual. Reliab. Eng. Int. 21 (2005), pp. 781–794. [Google Scholar]
  • 12.Castagliola P., Celano G., and Fichera S., A new CUSUM- S2 control chart for monitoring the process variance, J. Qual. Maint. Eng. 15 (2009), pp. 344–357. [Google Scholar]
  • 13.Castagliola P., Celano G., and Fichera S., A Johnson's type transformation EWMA- S2 control chart, Int. J. Qual. Eng. Technol. 1 (2010), pp. 253–275. [Google Scholar]
  • 14.Castagliola P., Celano G., Fichera S., and Giuffrida F., A variable sampling interval S2-EWMA control chart for monitoring the process variance, Int. J. Technol. Manag. 37 (2007), pp. 125–146. [Google Scholar]
  • 15.Chatterjee K., Koukouvinos C., and Lappa A., A new S2-TEWMA control chart for monitoring process dispersion, Qual. Reliab. Eng. Int. 37 (2021), pp. 1334–1354. [Google Scholar]
  • 16.Chatterjee K., Koukouvinos C., and Lappa A., Monitoring process mean and dispersion with one double generally weighted moving average control chart, J. Appl. Stat. (2021). doi: 10.1080/02664763.2021.1980506 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Chen G., Cheng S.W., and Xie H., Monitoring process mean and variability with one EWMA chart, J. Qual. Technol. 33 (2001), pp. 223–233. [Google Scholar]
  • 18.Chiu W.C. and Lu S.L., On the steady-state performance of the Poisson double GWMA control chart, Qual. Technol. Quant. Manag. 12 (2015), pp. 195–208. [Google Scholar]
  • 19.Chiu W.C. and Sheu S.H., Fast initial response features for Poisson GWMA control charts, Commun. Stat. - Simul. Comput. 37 (2008), pp. 1422–1439. [Google Scholar]
  • 20.DeVor R.E., Chang T., and Sutherland J.W., Statistical Quality Design and Control: Contemporary Concepts and Methods, 2nd ed., Pearson Prentice Hall, Upper Saddle River, NJ, 2007. [Google Scholar]
  • 21.Haq A., A new hybrid exponentially weighted moving average control chart for monitoring process mean, Qual. Reliab. Eng. Int. 29 (2013), pp. 1015–1025. [Google Scholar]
  • 22.Haq A., A new hybrid exponentially weighted moving average control chart for monitoring process mean: Discussion, Qual. Reliab. Eng. Int. 33 (2017), pp. 1629–1631. [Google Scholar]
  • 23.Haq A., New EWMA control charts for monitoring process dispersion using auxiliary information, Qual. Reliab. Eng. Int. 33 (2017), pp. 2597–2614. [Google Scholar]
  • 24.Haq A., A new adaptive EWMA control chart for monitoring the process dispersion, Qual. Reliab. Eng. Int. 34 (2018), pp. 846–857. [Google Scholar]
  • 25.Huang C.J., Tai S.H., and Lu S.L., Measuring the performance improvement of a double generally weighted moving average control chart, Expert Syst. Appl. 41 (2014), pp. 3313–3322. [Google Scholar]
  • 26.Huwang L., Huang C.J., and Wang Y.H.T., New EWMA control charts for monitoring process dispersion, Comput. Stat. Data Anal 54 (2010), pp. 2328–2342. [Google Scholar]
  • 27.Johnson N.L., Systems of frequency curves generated by methods of translation, Biometrika 36 (1949), pp. 149–176. [PubMed] [Google Scholar]
  • 28.Kang H.W. and Baik J.W., Double generally weighted moving average control chart for demerit statistics, Adv. Sci. Lett. 13 (2012), pp. 183–188. [Google Scholar]
  • 29.Karakani H.M., Human S.W., and Van Niekerk J., A double generally weighted moving average exceedance control chart, Qual. Reliab. Eng. Int. 35 (2019), pp. 224–245. [Google Scholar]
  • 30.Li C. and Mukherjee A., Two economically optimized nonparametric schemes for monitoring process variability, Qual. Reliab. Eng. Int. 37 (2021), pp. 1939–1955. [Google Scholar]
  • 31.Lu S.L., Nonparametric double generally weighted moving average sign charts based on process proportion, Commun. Stat. - Theory Meth. 47 (2018), pp. 2684–2700. [Google Scholar]
  • 32.Mabude K., Malela-Majika J.-C., Castagliola P., and Shongwe S.C., Generally weighted moving average monitoring schemes: Overview and perspectives, Qual. Reliab. Eng. Int. 37 (2021), pp. 409–432. [Google Scholar]
  • 33.Mahadik S.B., Godase D.G., and Teoh W.L., A two-sided SPRT control chart for process dispersion, J. Stat. Comput. Simul. 91 (2021), pp. 3603–3614. [Google Scholar]
  • 34.Montgomery D.C., Introduction to Statistical Quality Control, 7th ed., Wiley and sons, New York, 2013. [Google Scholar]
  • 35.Page E.S., Continuous inspection schemes, Biometrika 41 (1954), pp. 100–115. [Google Scholar]
  • 36.Page E.S., Controlling the standard deviation by CUSUMs and warning lines, Technometrics 5 (1963), pp. 307–315. [Google Scholar]
  • 37.Riaz M., Abbasi S.A., Abid M., and Hamzat A.K., A new HWMA dispersion control chart with an application to wind farm data, Mathematics 8 (2020), p. 2136. [Google Scholar]
  • 38.Roberts S.W., Control chart tests based on geometric moving averages, Technometrics 1 (1959), pp. 239–250. [Google Scholar]
  • 39.Shamma S.E. and Shamma A.K., Development and evaluation of control charts using double exponentially weighted moving averages, Int. J. Qual. Reliab. Manag. 9 (1992), pp. 18–26. [Google Scholar]
  • 40.Sheu S.H. and Hsieh Y.T., The extended GWMA control chart, J. Appl. Stat. 36 (2009), pp. 135–147. [Google Scholar]
  • 41.Sheu S.H. and Lin T.C., The generally weighted moving average control chart for detecting small shifts in the process mean, Qual. Eng. 16 (2003), pp. 209–231. [Google Scholar]
  • 42.Sheu S.H. and Lu S.L., The generally weighted moving average variance chart, Commun. Stat. - Theory Meth. 42 (2013), pp. 3204–3214. [Google Scholar]
  • 43.Tai S.H., Hsieh Y.T., and Huang C.J., The Combined Double Generally Weighted Moving Average Control Chart for Individual Observations, International Conference on Management and Service Science, China, 2010, pp. 1–4.
  • 44.Tariq S., Noor-ul-Amin M., Aslam M., and Hanif M., Design of hybrid EWMln- S2 control chart, J. Ind. Prod. Eng. 36 (2019), pp. 554–562. [Google Scholar]
  • 45.Zaman B., Efficient adaptive CUSUM control charts based on generalized likelihood ratio test to monitor process dispersion shift, Qual. Reliab. Eng. Int. 37 (2021), pp. 3192–3220. [Google Scholar]
  • 46.Zaman B., Adaptive CUSUM control charts for efficient monitoring of process dispersion, Qual. Reliab. Eng. Int. (2022), pp. 1–30. doi: 10.1002/qre.3075 [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplemental Material

Articles from Journal of Applied Statistics are provided here courtesy of Taylor & Francis

RESOURCES