Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Jul 7:2023.07.06.547837. [Version 1] doi: 10.1101/2023.07.06.547837

Mon1a and FCHO2 are required for maintenance of Golgi architecture

Dustin C Bagley, Scott G Morham, Jerry Kaplan, Diane M Ward
PMCID: PMC10350065  PMID: 37461455

Abstract

Mon1a has been shown to function in the endolysosomal pathway functioning in the Mon1-Ccz1 complex and it also acts in the secretory pathway where it interacts with dynein and affects ER to Golgi traffic. Here we show that Mon1a is also required for maintenance of the Golgi apparatus. We identified the F-BAR protein FCHO2 as a Mon1a-interacting protein by both yeast two-hybrid analysis and co-immunoprecipitation. siRNA-dependent reductions in Mon1a or FCHO2 resulted in Golgi fragmentation. Membrane trafficking through the secretory apparatus in FCHO2-depleted cells was unaltered, however, reduction of FCHO2 affected the uniform distribution of Golgi enzymes necessary for carbohydrate modification. Fluorescence recovery after photobleaching analysis showed that the Golgi ministacks in Mon1a- or FCHO2-silenced cells did not exchange resident membrane proteins. The effect of FCHO2 silencing on Golgi structure was partially cell cycle-dependent and required mitosis-dependent Golgi fragmentation, whereas the effect of Mon1a-silencing on Golgi disruption was not cell cycle-dependent. mCherry-FCHO2 transiently colocalized on Golgi structures independent of Mon1a. These findings suggest that Mon1a has functions throughout the secretory pathway including interacting with dynein at the ER-Golgi interface in vesicle formation and then interacting with FCHO2 at the Golgi to generate lateral links between ministacks, thus creating Golgi ribbons.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES