Skip to main content
British Journal of Industrial Medicine logoLink to British Journal of Industrial Medicine
. 1990 Apr;47(4):242–247. doi: 10.1136/oem.47.4.242

Pulmonary mechanical function and diffusion capacity after deep saturation dives.

E Thorsen 1, K Segadal 1, E Myrseth 1, A Påsche 1, A Gulsvik 1
PMCID: PMC1035145  PMID: 2337532

Abstract

To assess the effects of deep saturation dives on pulmonary function, static and dynamic lung volumes, transfer factor for carbon monoxide (T1CO), delta-N2, and closing volume (CV) were measured before and after eight saturation dives to pressures of 3.1-4.6 MPa. The atmospheres were helium-oxygen mixtures with partial pressures of oxygen of 40-60 kPa. The durations of the dives were 14-30 days. Mean rate of decompression was 10.5-13.5 kPa/hour. A total of 43 divers were examined, six of whom took part in two dives, the others in one only. Dynamic lung volumes did not change significantly but total lung capacity (TLC) increased significantly by 4.3% and residual volume (RV) by 14.8% (p less than 0.05). CV was increased by 16.7% (p less than 0.01). The T1CO was reduced from 13.0 +/- 1.6 to 11.8 +/- 1.7 mmol/min/kPa (p less than 0.01) when corrected to a haemoglobin concentration of 146 g/l. Effective alveolar volume was unchanged. The increase in TLC and decrease in T1CO were correlated (r = -0.574, p less than 0.02). A control examination of 38 of the divers four to six weeks after the dives showed a partial normalisation of the changes. The increase in TLC, RV, and CV, and the decrease in T1CO, could be explained by a loss of pulmonary elastic tissue caused by inflammatory reactions induced by oxygen toxicity or venous gas emboli.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caldwell P. R., Lee W. L., Jr, Schildkraut H. S., Archibald E. R. Changes in lung volume, diffusing capacity, and blood gases in men breathing oxygen. J Appl Physiol. 1966 Sep;21(5):1477–1483. doi: 10.1152/jappl.1966.21.5.1477. [DOI] [PubMed] [Google Scholar]
  2. Clanton T. L., Dixon G. F., Drake J., Gadek J. E. Effects of swim training on lung volumes and inspiratory muscle conditioning. J Appl Physiol (1985) 1987 Jan;62(1):39–46. doi: 10.1152/jappl.1987.62.1.39. [DOI] [PubMed] [Google Scholar]
  3. Cotes J. E., Davey I. S., Reed J. W., Rooks M. Respiratory effects of a single saturation dive to 300 m. Br J Ind Med. 1987 Feb;44(2):76–82. doi: 10.1136/oem.44.2.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crosbie W. A., Reed J. W., Clarke M. C. Functional characteristics of the large lungs found in commercial divers. J Appl Physiol Respir Environ Exerc Physiol. 1979 Apr;46(4):639–645. doi: 10.1152/jappl.1979.46.4.639. [DOI] [PubMed] [Google Scholar]
  5. Davey I. S., Cotes J. E., Reed J. W. Relationship of ventilatory capacity to hyperbaric exposure in divers. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jun;56(6):1655–1658. doi: 10.1152/jappl.1984.56.6.1655. [DOI] [PubMed] [Google Scholar]
  6. Flick M. R., Milligan S. A., Hoeffel J. M., Goldstein I. M. Catalase prevents increased lung vascular permeability during air emboli in unanesthetized sheep. J Appl Physiol (1985) 1988 Mar;64(3):929–935. doi: 10.1152/jappl.1988.64.3.929. [DOI] [PubMed] [Google Scholar]
  7. Flick M. R., Perel A., Staub N. C. Leukocytes are required for increased lung microvascular permeability after microembolization in sheep. Circ Res. 1981 Mar;48(3):344–351. doi: 10.1161/01.res.48.3.344. [DOI] [PubMed] [Google Scholar]
  8. Hall J. E., Hofman W. F., Ehrhart I. C. Venous occlusion pressure and vascular permeability in the dog lung after air embolization. J Appl Physiol (1985) 1988 Jul;65(1):34–40. doi: 10.1152/jappl.1988.65.1.34. [DOI] [PubMed] [Google Scholar]
  9. Harabin A. L., Homer L. D., Weathersby P. K., Flynn E. T. An analysis of decrements in vital capacity as an index of pulmonary oxygen toxicity. J Appl Physiol (1985) 1987 Sep;63(3):1130–1135. doi: 10.1152/jappl.1987.63.3.1130. [DOI] [PubMed] [Google Scholar]
  10. Hlastala M. P., Robertson H. T., Ross B. K. Gas exchange abnormalities produced by venous gas emboli. Respir Physiol. 1979 Jan;36(1):1–17. doi: 10.1016/0034-5687(79)90011-2. [DOI] [PubMed] [Google Scholar]
  11. Jones R., Zapol W. M., Reid L. Pulmonary artery remodeling and pulmonary hypertension after exposure to hyperoxia for 7 days. A morphometric and hemodynamic study. Am J Pathol. 1984 Nov;117(2):273–285. [PMC free article] [PubMed] [Google Scholar]
  12. Leith D. E., Bradley M. Ventilatory muscle strength and endurance training. J Appl Physiol. 1976 Oct;41(4):508–516. doi: 10.1152/jappl.1976.41.4.508. [DOI] [PubMed] [Google Scholar]
  13. Maio D. A., Farhi L. E. Effect of gas density on mechanics of breathing. J Appl Physiol. 1967 Nov;23(5):687–693. doi: 10.1152/jappl.1967.23.5.687. [DOI] [PubMed] [Google Scholar]
  14. Neuman T. S., Spragg R. G., Wagner P. D., Moser K. M. Cardiopulmonary consequences of decompression stress. Respir Physiol. 1980 Aug;41(2):143–153. doi: 10.1016/0034-5687(80)90048-1. [DOI] [PubMed] [Google Scholar]
  15. Ohkuda K., Nakahara K., Binder A., Staub N. C. Venous air emboli in sheep: reversible increase in lung microvascular permeability. J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):887–894. doi: 10.1152/jappl.1981.51.4.887. [DOI] [PubMed] [Google Scholar]
  16. Puy R. J., Hyde R. W., Fisher A. B., Clark J. M., Dickson J., Lambertsen C. J. Alterations in the pulmonary capillary bed during early O2 toxicity in man. J Appl Physiol. 1968 Apr;24(4):537–543. doi: 10.1152/jappl.1968.24.4.537. [DOI] [PubMed] [Google Scholar]
  17. Riley D. J., Kramer M. J., Kerr J. S., Chae C. U., Yu S. Y., Berg R. A. Damage and repair of lung connective tissue in rats exposed to toxic levels of oxygen. Am Rev Respir Dis. 1987 Feb;135(2):441–447. doi: 10.1164/arrd.1987.135.2.441. [DOI] [PubMed] [Google Scholar]
  18. Smith R. M., Hong S. K., Dressendorfer R. H., Dwyer H. J., Hayashi E., Yelverton C. Hana Kai II: a 17-day dry saturation dive at 18.6 ATA. IV. Cardiopulmonary functions. Undersea Biomed Res. 1977 Sep;4(3):267–281. [PubMed] [Google Scholar]
  19. Spencer M. P., Clarke H. F. Precordial monitoring of pulmonary gas embolism and decompression bubbles. Aerosp Med. 1972 Jul;43(7):762–767. [PubMed] [Google Scholar]
  20. Watt S. J. Effect of commercial diving on ventilatory function. Br J Ind Med. 1985 Jan;42(1):59–62. doi: 10.1136/oem.42.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yamasaki M., Taya Y., Fujiie K., Seki K., Sasaki T., Nakayama H. Effect of a simulated saturation dive to 31 ATA on pulmonary function. Ann Physiol Anthropol. 1986 Oct;5(4):191–196. doi: 10.2114/ahs1983.5.191. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Industrial Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES