Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
letter
. 2023 Jun 20;67(7):e00568-23. doi: 10.1128/aac.00568-23

Identification of Tecovirimat Resistance-Associated Mutations in Human Monkeypox Virus - Los Angeles County

Jacob M Garrigues a, Peera Hemarajata a, Abraar Karan a,b, Naman K Shah a, Jemma Alarcón a,c, Amy N Marutani a, Lauren Finn a, Todd G Smith c, Crystal M Gigante c, Whitni Davidson c, Nhien T Wynn c, Christina L Hutson c, Moon Kim a, Dawn Terashita a, Sharon E Balter a, Nicole M Green a,
PMCID: PMC10353411  PMID: 37338408

LETTER

Tecovirimat (also known as TPOXX or ST-246) is a drug available for the treatment of mpox through the Centers for Disease Control and Prevention’s Expanded Access Investigational New Drug “compassionate use” protocol (https://www.cdc.gov/poxvirus/monkeypox/clinicians/Tecovirimat.html). In Los Angeles County, a fatal case of mpox with tecovirimat resistance was previously reported (1). Epidemiologic surveillance in Los Angeles County has since identified additional cases of severe mpox that did not improve after multiple rounds of tecovirimat treatment, including one involving a person who succumbed to infection (Table 1). Consistent with reports describing severe manifestations of mpox within the current global outbreak (1, 2), the identified cases involved host immunodeficiency due to advanced HIV infection.

TABLE 1.

Clinical data for mpox cases

Patient CD4+ T-cell count (cells/mm3)a HIV viral load (copies/mL)a Mpox treatment and Specimen Collection History Clinical outcome
A <35 130,565 Tecovirimat POc 600 mg: BIDd, 1 wk
Tecovirimat PO 600 mg: BID, 1 wk
Tecovirimat IVe 200 mg: 3 doses
Tecovirimat PO 600 mg: BID, 2 wks
Tecovirimat IV 200 mg: qf 12 hours, 2 days
Specimen A.1 collected
VIGIVg (unknown dose): single infusion
Tecovirimat IV 200 mg: q 12 hours, 2 wks
Specimens A.2-A.26 collected
Deceased
B 73 <20 Tecovirimat PO 600 mg: BID, 2 wks
Tecovirimat PO 600 mg: BID, 2 wks
Specimens B.1-B.2 collected
Tecovirimat IV 200 mg: q 12 hours, 2 wks
VIGIV (unknown dose): single infusion
Brincidofovir PO (unknown dose): single dose
Unknown
C 136 178,982 Tecovirimat PO 200-600 mg: QDh-BID, 2 wks
Tecovirimat IV 200 mg: q 12 hours, 3 wks
Specimens C.1-C.2 collected
VIGIV (unknown dose): single infusion
Ongoing lesions (after 6 mo)
D 96 2,620 Tecovirimat PO 600 mg: BID, 2 wks
Tecovirimat PO 600 mg: BID, 11 days
Specimen D.1 collectedb
Cidofovir IV 5 mg/kg: single infusion
Tecovirimat PO 600 mg: BID, 4 days
VIGIV 9000 units/kg: single infusion
Tecovirimat IV 200 mg: q 12 hours, 2 wks
Cidofovir IV 5 mg/kg: single infusion
Recovered
E 191 606 Tecovirimat PO 600 mg: BID, 2 wks
Tecovirimat PO 600 mg: BID, 4 wks
Specimens E.1-E.8 collected
Tecovirimat PO 600 mg: BID, 6 wks
Tecovirimat PO 600 mg: BID, 10 wks
Specimens E.9-E.14 collected
Ongoing lesions (after 6 mo)
F 54 485,298 Specimen F.1 collected
Tecovirimat PO 600 mg: BID, 1 wk
Tecovirimat PO 600 mg: BID, 2 days
Tecovirimat IV 200 mg: q 12 hours, 4 days
Specimens F.2-F.5 collected
Ongoing lesions (after 7 mo)
a

Results are most proximal to case identification and management. Specimen collection history is in bold text.

b

Specimen D.1 was collected 5 days into preceding tecovirimat treatment course.

c

PO = Per Oral.

d

BID = Twice daily.

e

IV = Intravenous.

f

q = every.

g

VIGIV = Vaccinia Immune Globulin Intravenous.

h

QD = Once daily.

Tecovirimat targets the conserved orthopoxvirus VP37 envelope protein required for extracellular virus particle generation, and previous studies from monkeypox virus (MPXV) and other orthopoxviruses identified more than 20 mutations in VP37 associated with tecovirimat resistance (https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/fda-mpox-response#therapeutics) (1, 3). To determine whether these identified cases involved tecovirimat resistance, MPXV specimens were subjected to whole-genome sequencing and examined for mutations in the homolog of the vaccinia virus Copenhagen F13L gene that encodes VP37 protein (1, 4). All specimens encoded lysine at amino acid position 353, which is prevalent within the current outbreak and does not affect tecovirimat sensitivity (5). Specimens from six cases harbored a cumulative total of eight VP37 mutations associated with resistance in prior studies: H238Q, P243S, N267D, A288P, A290V, D294V, A295E, and I372N (Table 2). Five previously undescribed mutations of unknown significance were also identified (T220A/I, T245I, A265D, and T289A), which may represent novel tecovirimat-interacting residues. Allele frequency analysis demonstrated resistance mutation heterogeneity within single lesion specimens, and different mutations were identified among distinct lesion specimens from the same person, suggesting mutations were acquired during treatment. Consistent with a de novo process, comparison of specimens collected before and after treatment in a single person (Patient F) showed resistance-associated mutations in VP37 only after treatment exposure (Table 2).

TABLE 2.

VP37 mutation and tecovirimat resistance data for human monkeypox virus specimensa

Patient Specimen (source) VP37 mutations detected (allele frequencyb) GISAIDc ID GenBank ID SRAd ID ECe50 (μM) Fold changef
A A.1 (Unknown) A290V (0.97) EPI_ISL_15597062 OP748968 SRR22116985 0.2032 12
A.2 (Unknown) N267D (0.24), A288P (0.76) EPI_ISL_15896341 OP890565 SRR22398844 Pending
A.3 (Penis) N267D (0.38), A288P (0.37), A295E (0.31), I372N (0.22) EPI_ISL_15896342 OP890566 SRR22398843 Culture contaminated
A.4 (Scrotum) A288P (0.95) EPI_ISL_15896343 OP890567 SRR22398842 Culture contaminated
A.5 (Ltg Thigh) A288P (1.0) EPI_ISL_15896344 OP890568 SRR22398841 Pending
A.6 (Rth Sole) A295E (0.82) EPI_ISL_15896345 OP890569 SRR22398840 Culture contaminated
A.7 (Rt Heel) I372N (0.84) EPI_ISL_15896346 OP890570 SRR22398839 Culture negative
A.8 (Lt Back Knee) N267D (0.55), A288P (0.18), D294V (0.29) EPI_ISL_15896347 OP890571 SRR22398838 Pending
A.9 (Unknown) N267D (0.91) EPI_ISL_15896348 OP890572 SRR22398837 Culture contaminated
A.10 (Unknown) T220A (0.44)i, A265D (0.50)i, A295E (0.51) EPI_ISL_15896349 OP890573 SRR22398836 Culture contaminated
A.11 (Lt 2nd Finger) A288P (0.62), I372N (0.10) EPI_ISL_15896350 OP890574 SRR22398835 Culture negative
A.12 (Lt Medial Thigh) N267D (0.37), A288P (0.63) EPI_ISL_15896351 OP890575 SRR22398833 Culture contaminated
A.13 (Rt Eyelid) A288P (1.0) EPI_ISL_15896352 OP890576 SRR22398832 Pending
A.14 (Tongue) A288P (1.0) EPI_ISL_15896353 OP890577 SRR22398831 Pending
A.15 (Rt Forehead) I372N (0.96) EPI_ISL_15896329 OP890553 SRR22398858 Pending
A.16 (Lt Forehead) N267D (0.88), D294V (0.11) EPI_ISL_15896330 OP890554 SRR22398857 Culture contaminated
A.17 (Between Eyes) A288P (0.88) EPI_ISL_15896331 OP890555 SRR22398855 10.28 590
A.18 (Lt Ear) I372N (0.94) EPI_ISL_15896332 OP890556 SRR22398854 Pending
A.19 (Lt Nose) A288P (0.19), A290V (0.25), I372N (0.35) EPI_ISL_15896333 OP890557 SRR22398853 Pending
A.20 (Rt Cheek) A288P (0.12), I372N (0.87) EPI_ISL_15896334 OP890558 SRR22398852 Culture negative
A.21 (Lower Lip) N267D (0.70), A288P (0.22) EPI_ISL_15896335 OP890559 SRR22398851 Pending
A.22 (Lt Neck) A288P (0.85) EPI_ISL_15896336 OP890560 SRR22398850 Culture negative
A.23 (Lt Chest) T220I (0.49)i, P243S (0.50), A295E (0.51) EPI_ISL_15896337 OP890561 SRR22398849 Culture negative
A.24 (Rt Hand) A290V (0.88) EPI_ISL_15896338 OP890562 SRR22398848 Culture negative
A.25 (Lt Elbow) D294V (1.0) EPI_ISL_15896339 OP890563 SRR22398847 Pending
A.26 (Lt Shoulder) H238Q (0.99) EPI_ISL_15896340 OP890564 SRR22398846 0.5803 33
B B.1 (Unknown) T245I (0.12)i, D294V (0.91) EPI_ISL_15325434 OP615280 SRR21864633 0.3820 22
B.2 (Rt Ear) H238Q (0.27), A288P (0.21), D294V (0.15), I372N (0.33) EPI_ISL_15417996 OP680496 SRR21966131 ~5.150 ~290
C C.1 (Unknown) A290V (1.0) EPI_ISL_15896305 OP890529 SRR22398845 Culture negative
C.2 (Unknown) A290V (1.0) EPI_ISL_15955339 OP920682 SRR22459664 Culture negative
D D.1 (Penis) N267D (0.68), A288P (0.29) EPI_ISL_17582852 OQ888843 SRR24326324 15.89 910
E E.1 (Lt Foot Between Toes) I372N (1.0) EPI_ISL_15418000 OP680500 SRR21966127 0.07286 3.5
E.2 (Rt Cheek) D294V (1.0) EPI_ISL_15418001 OP680501 SRR21966126 0.3364 19
E.3 (Lt Hand by Thumb) A290V (1.0) EPI_ISL_15418002 OP680502 SRR21966125 0.1670 7.9
E.4 (Lt Foot) A290V (0.30), I372N (0.86) EPI_ISL_15418003 OP680503 SRR21966124 0.05551 2.6
E.5 (Lt Ring Finger) H238Q (1.0) EPI_ISL_15418004 OP680504 SRR21966123 0.5390 28
E.6 (Rt Foot) N267D (0.97) EPI_ISL_15418005 OP680505 SRR21966122 11.05 480
E.7 (Lt Foot, Scab) A290V (0.56), I372N (0.77) EPI_ISL_15418007 OP680507 SRR21966119 77.37 4400
E.8 (Lt Chin, Scab) D294V (1.0) EPI_ISL_15418008 OP680508 SRR21966118 0.2344 13
E.9 (Lt Great Toe) I372N (1.0) EPI_ISL_16997407 OQ503839 SRR23580660 Pending
E.10 (Lt 4th Finger) H238Q (1.0) EPI_ISL_16997408 OQ503840 SRR23580659 Pending
E.11 (Rt Medial Foot) N267D (1.0) EPI_ISL_16997409 OQ503841 SRR23580658 Pending
E.12 (Lt Great Toe, Tissue) I372N (1.0) EPI_ISL_16997410 OQ503842 SRR23580657 Pending
E.13 (Rt Medial Foot, Tissue) N267D (0.45), I372N (0.56) EPI_ISL_16997411 OQ503843 SRR23580656 Pending
E.14 (Lt 4th Finger, Tissue) H238Q (1.0) EPI_ISL_16997412 OQ503844 SRR23580655 Pending
F F.1 (Unknown)# none EPI_ISL_16679205 OQ330972 SRR23238068 0.007144 0.41
F.2 (Face) A290V (0.68) EPI_ISL_16997464 OQ503820 SRR23580586 Culture contaminated
F.3 (Lt Ear) T289A (0.41)i, I372N (0.81) EPI_ISL_16679238 OQ331005 SRR23238051 Pending
F.4 (Lt Buttock) A290V (1.0) EPI_ISL_16679239 OQ331006 SRR23238050 0.2257 13
F.5 (Rt Foot) A290V (0.52) EPI_ISL_16679240 OQ331007 SRR23238049 Culture negative
a

All specimens are from lesion swabs unless noted otherwise. Consensus mutations with an allele frequency of 0.6 or greater are in bold text. Specimens with a 2- to 9-fold increase in resistance are considered partially resistant, while a 10-fold or greater increase is considered resistant.

b

Alelle frequency = proportion of mapped reads containing the corresponding mutation at each site.

c

GISAID = Global Initiative on Sharing Avian Influenza Data.

d

SRA = Sequence Read Archive.

e

EC50 = Half-maximal effective concentration.

f

Fold change = observed EC50 compared to EC50 for MPXV Clade IIa (US, 2003 strain).

g

Lt = Left.

h

Rt = Right.

i

Previously unassociated with tecovirimat resistance; #Tecovirimat-naïve specimen.

Phenotypic testing of MPXV cultured from a subset of specimens (1, 5) displayed a wide range of tecovirimat resistance levels in vitro compared to wild-type isolates (Table 2), arguing these mutations confer resistance within currently circulating strains. For heterogenous cultures with multiple VP37 mutations, it is unclear how much individual mutations contribute to resistance and whether resistance is due to single or multiple mutations, especially in cases with low allele frequencies. It is also possible that uncharacterized mutations outside of VP37 enhance or diminish tecovirimat resistance.

These findings demonstrate that tecovirimat resistance can arise in the setting of prolonged treatment exposure with host immunodeficiency and underscore the need for combined therapeutics with different viral targets (including VIGIV and cidofovir/brincidofovir) (6, 7) when treating mpox in certain people (8), as is the case with progressive vaccinia (9). Clinical management should ensure effective drug delivery/dosing (e.g., making sure oral tecovirimat is taken with a fatty meal) and optimization of immune function when treating with tecovirimat to prevent resistance from developing. Additionally, this work suggests that sequencing of MPXV to identify tecovirimat resistance could serve as a valuable clinical tool.

Use of trade names and commercial sources are for identification only and do not imply endorsement by the U.S. Department of Health and Human Services or the County of Los Angeles Department of Public Health. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention or their institutions, or the County of Los Angeles Department of Public Health.

This work was supported by the Epidemiology and Laboratory Capacity for Prevention and Control of Emerging Infectious Diseases cooperative agreement of the Centers for Disease Control and Prevention (grant 6 NU50CK000498). A.K. was supported by the 2T32AI7502-26 Applied Genomics in Infectious Diseases training grant from Stanford University.

The Los Angeles County Department of Public Health Institutional Review Board (IRB) determined that this study met the criteria for not research per 45 CFR 46.102(e). Therefore, IRB review was not needed.

REFERENCES

  • 1.Alarcón J, Kim M, Terashita D, Davar K, Garrigues JM, Guccione JP, Evans MG, Hemarajata P, Wald-Dickler N, Holtom P, Garcia Tome R, Anyanwu L, Shah NK, Miller M, Smith T, Matheny A, Davidson W, Hutson CL, Lucas J, Ukpo OC, Green NM, Balter SE. 2023. An mpox-related death in the United States. N Engl J Med 388:1246–1247. doi: 10.1056/NEJMc2214921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Mitjà O, Alemany A, Marks M, Lezama Mora JI, Rodríguez-Aldama JC, Torres Silva MS, Corral Herrera EA, Crabtree-Ramirez B, Blanco JL, Girometti N, Mazzotta V, Hazra A, Silva M, Montenegro-Idrogo JJ, Gebo K, Ghosn J, Peña Vázquez MF, Matos Prado E, Unigwe U, Villar-García J, Wald-Dickler N, Zucker J, Paredes R, Calmy A, Waters L, Galvan-Casas C, Walmsley S, Orkin CM, SHARE-NET writing group . 2023. Mpox in people with advanced HIV infection: a global case series. Lancet 401:939–949. doi: 10.1016/S0140-6736(23)00273-8. [DOI] [PubMed] [Google Scholar]
  • 3.Duraffour S, Lorenzo MM, Zöller G, Topalis D, Grosenbach D, Hruby DE, Andrei G, Blasco R, Meyer H, Snoeck R. 2015. ST-246 is a key antiviral to inhibit the viral F13L phospholipase, one of the essential proteins for orthopoxvirus wrapping. J Antimicrob Chemother 70:1367–1380. doi: 10.1093/jac/dku545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Chen NFG, Chaguza C, Gagne L, Doucette M, Smole S, Buzby E, Hall J, Ash S, Harrington R, Cofsky S, Clancy S, Kapsak CJ, Sevinsky J, Libuit K, Park DJ, Hemarajata P, Garrigues JM, Green NM, Sierra-Patev S, Carpenter-Azevedo K, Huard RC, Pearson C, Incekara K, Nishimura C, Huang JP, Gagnon E, Reever E, Razeq J, Muyombwe A, Borges V, Ferreira R, Sobral D, Duarte S, Santos D, Vieira L, Gomes JP, Aquino C, Savino IM, Felton K, Bajwa M, Hayward N, Miller H, Naumann A, Allman R, Greer N, Fall A, Mostafa HH, McHugh MP, Maloney DM, Dewar R, et al. 2023. Development of an amplicon-based sequencing approach in response to the global emergence of mpox. PLoS Biol. 21:e3002151. doi: 10.1126/science.add4153 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gigante CM, Korber B, Seabolt MH, Wilkins K, Davidson W, Rao AK, Zhao H, Smith TG, Hughes CM, Minhaj F, Waltenburg MA, Theiler J, Smole S, Gallagher GR, Blythe D, Myers R, Schulte J, Stringer J, Lee P, Mendoza RM, Griffin-Thomas LA, Crain J, Murray J, Atkinson A, Gonzalez AH, Nash J, Batra D, Damon I, McQuiston J, Hutson CL, McCollum AM, Li Y. 2022. Multiple lineages of monkeypox virus detected in the United States, 2021–2022. Science 378:560–565. doi: 10.1126/science.add4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Siegrist EA, Sassine J. 2023. Antivirals with activity against mpox: a clinically oriented review. Clin Infect Dis 76:155–164. doi: 10.1093/cid/ciac622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. 2023. An overview of antivirals against monkeypox virus and other orthopoxviruses. J Med Chem 66:4468–4490. doi: 10.1021/acs.jmedchem.3c00069. [DOI] [PubMed] [Google Scholar]
  • 8.Rao AK, Schrodt CA, Minhaj FS, Waltenburg MA, Cash-Goldwasser S, Yu Y, Petersen BW, Hutson C, Damon IK. 2023. Interim clinical treatment considerations for severe manifestations of mpox - United States, February 2023. MMWR Morb Mortal Wkly Rep 72:232–243. doi: 10.15585/mmwr.mm7209a4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lederman ER, Davidson W, Groff HL, Smith SK, Warkentien T, Li Y, Wilkins KA, Karem KL, Akondy RS, Ahmed R, Frace M, Shieh WJ, Zaki S, Hruby DE, Painter WP, Bergman KL, Cohen JI, Damon IK. 2012. Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001. J Infect Dis 206:1372–1385. doi: 10.1093/infdis/jis510. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES