Skip to main content
British Journal of Industrial Medicine logoLink to British Journal of Industrial Medicine
. 1991 Jun;48(6):382–388. doi: 10.1136/oem.48.6.382

Rapid changes in concentrations of essential elements in organs of rats exposed to methylmercury chloride and mercuric chloride as shown by simultaneous multielemental analysis.

H Muto 1, M Shinada 1, K Tokuta 1, Y Takizawa 1
PMCID: PMC1035382  PMID: 2064976

Abstract

An in vivo study of rats given a dominant lethal dose of methylmercury chloride (MMC) or mercuric chloride (HgCl2) was conducted to elucidate the rapid biotransformation of essential elements. The elements were measured by inductively coupled plasma atomic emission spectrometry. For the rat brain Zn concentrations were higher in the MMC group than in the HgCl2 and control groups. The highest Cu concentration was found in HgCl2 dosed rat liver. For the rat kidney the highest Zn concentration was seen in the MMC group. From principal component analysis on the time dependent behaviour of each element in rat organs, characteristics specific to Cu in the liver and kidney and Mn in the brain were found after exposure to HgCl2 and Ca and Zn in the brain after exposure to MMC.

Full text

PDF
382

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barfield K. D., Bevan D. R. Fusion of phospholipid vesicles induced by Zn2+, Cd2+, and Hg2+. Biochem Biophys Res Commun. 1985 Apr 16;128(1):389–395. doi: 10.1016/0006-291x(85)91691-2. [DOI] [PubMed] [Google Scholar]
  2. Bogden J. D., Kemp F. W., Troiano R. A., Jortner B. S., Timpone C., Giuliani D. Effect of mercuric chloride and methylmercury chloride exposure on tissue concentrations of six essential minerals. Environ Res. 1980 Apr;21(2):350–359. doi: 10.1016/0013-9351(80)90037-7. [DOI] [PubMed] [Google Scholar]
  3. Brady F. O., Webb M. Metabolism of zinc and copper in the neonate. (Zinc, copper)-thionein in the developing rat kidney and testis. J Biol Chem. 1981 Apr 25;256(8):3931–3935. [PubMed] [Google Scholar]
  4. Chávez E., Holguín J. A. Mitochondrial calcium release as induced by Hg2+. J Biol Chem. 1988 Mar 15;263(8):3582–3587. [PubMed] [Google Scholar]
  5. Chávez E., Zazueta C., Díaz E., Holquín J. A. Characterization by Hg2+ of two different pathways for mitochondrial Ca2+ release. Biochim Biophys Acta. 1989 Nov 17;986(1):27–32. doi: 10.1016/0005-2736(89)90268-x. [DOI] [PubMed] [Google Scholar]
  6. Fishbein L. Perspectives of analysis of carcinogenic and mutagenic metals in biological samples. Int J Environ Anal Chem. 1987;28(1-2):21–69. doi: 10.1080/03067318708078399. [DOI] [PubMed] [Google Scholar]
  7. Hee S. S., Boyle J. R. Simultaneous multielemental analysis of some environmental and biological samples by inductively coupled plasma atomic emission spectrometry. Anal Chem. 1988 May 15;60(10):1033–1042. doi: 10.1021/ac00161a017. [DOI] [PubMed] [Google Scholar]
  8. Holt D., Magos L., Webb M. The interaction of cadium-induced rat renal metallothionein with bivalent mercury in vitro. Chem Biol Interact. 1980 Oct;32(1-2):125–135. doi: 10.1016/0009-2797(80)90072-1. [DOI] [PubMed] [Google Scholar]
  9. Lee Y. H., Shaikh Z. A., Tohyama C. Urinary metallothionein and tissue metal levels of rats injected with cadmium, mercury, lead, copper or zinc. Toxicology. 1983 Jul-Aug;27(3-4):337–345. doi: 10.1016/0300-483x(83)90029-x. [DOI] [PubMed] [Google Scholar]
  10. Magos L. Uptake of mercury by the brain. Br J Ind Med. 1968 Oct;25(4):315–318. doi: 10.1136/oem.25.4.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Muramatsu Y., Parr R. M. Concentrations of some trace elements in hair, liver and kidney from autopsy subjects--relationship between hair and internal organs. Sci Total Environ. 1988 Sep 15;76(1):29–40. doi: 10.1016/0048-9697(88)90280-x. [DOI] [PubMed] [Google Scholar]
  12. Ribarov S. R., Benov L. C., Marcova V. I., Benchev I. C. Hemoglobin-catalyzed lipid peroxidation in the presence of mercuric chloride. Chem Biol Interact. 1983 Jul 1;45(1):105–112. doi: 10.1016/0009-2797(83)90046-7. [DOI] [PubMed] [Google Scholar]
  13. Rizzuto R., Pitton G., Azzone G. F. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. Eur J Biochem. 1987 Jan 15;162(2):239–249. doi: 10.1111/j.1432-1033.1987.tb10591.x. [DOI] [PubMed] [Google Scholar]
  14. Sato M., Nagai Y., Bremner I. Urinary excretion of metallothionein-I and its degradation product in rats treated with cadmium, copper, zinc or mercury. Toxicology. 1989 May 31;56(1):23–33. doi: 10.1016/0300-483x(89)90209-6. [DOI] [PubMed] [Google Scholar]
  15. Webb M., Cain K. Functions of metallothionein. Biochem Pharmacol. 1982 Jan 15;31(2):137–142. doi: 10.1016/0006-2952(82)90202-7. [DOI] [PubMed] [Google Scholar]
  16. Whanger P. D., Deagen J. T. Effects of dietary mercury level and cadmium on rat tissue metallothionein: mercury binding and influences on zinc. Environ Res. 1983 Apr;30(2):372–380. doi: 10.1016/0013-9351(83)90222-0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Industrial Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES