Skip to main content
British Journal of Industrial Medicine logoLink to British Journal of Industrial Medicine
. 1991 Jul;48(7):437–444. doi: 10.1136/oem.48.7.437

The toxicity of benzene and its metabolism and molecular pathology in human risk assessment.

A Yardley-Jones 1, D Anderson 1, D V Parke 1
PMCID: PMC1035396  PMID: 1854646

Abstract

Benzene, a common industrial chemical and a component of gasoline, is radiomimetic and exposure may lead progressively to aplastic anaemia, leukaemia, and multiple myeloma. Although benzene has been shown to cause many types of genetic damage, it has consistently been classified as a non-mutagen in the Ames test, possibly because of the inadequacy of the S9 microsomal activation system. The metabolism of benzene is complex, yielding glucuronide and sulphate conjugates of phenol, quinol, and catechol, L-phenylmercapturic acid, and muconaldehyde and trans, trans-muconic acid by ring scission. Quinol is oxidised to p-benzoquinone, which binds to vital cellular components or undergoes redox cycling to generate oxygen radicals; muconaldehyde, like p-benzoquinone, is toxic through depletion of intracellular glutathione. Exposure to benzene may also induce the microsomal mixed function oxidase, cytochrome P450 IIE1, which is probably responsible for the oxygenation of benzene, but also has a propensity to generate oxygen radicals. The radiomimetic nature of benzene and its ability to induce different sites of neoplasia indicate that formation of oxygen radicals is a major cause of benzene toxicity, which involves multiple mechanisms including synergism between arylating and glutathione-depleting reactive metabolites and oxygen radicals. The occupational exposure limit in the United Kingdom (MEL) and the United States (PEL) was 10 ppm based on the association of benzene exposure with aplastic anaemia, but recently was lowered to 5 ppm and 1 ppm respectively, reflecting a concern for the risk of neoplasia. The American Conference of Governmental Industrial Hygienists (ACGIH) has even more recently recommended that, as benzene is considered an A1 carcinogen, the threshold limit value (TLV) should be decreased to 0.1 ppm. Only one study in man, based on nine cases of benzene associated fatal neoplasia, has been considered suitable for risk assessment. Recent re-evaluation of these data indicated that past assessments may have overestimated the risk, and different authors have considered that lifetime exposure to benzene at 1 ppm would result in an excess of leukaemia deaths of 9.5 to 1.0 per 1000. Although in this study, deaths at low levels of benzene exposure were associated with multiple myeloma and a long latency period, instead of leukaemia, which might justify further lowering of the exposure limit, the risk assessment model has been found to be non-significant for response at low levels of exposure. The paucity of data for man, the complexity of the metabolic activation of benzene, the interactive and synergistic mechanisms of benzene toxicity and carcinogenicity, the different disease endpoints (aplastic anaemia, leukaemia, and multiple myeloma), and different individual susceptibilities, all indicate that in such a complex scenario, regulators should proceed with caution before making further changes to the exposure limit for this chemical.

Full text

PDF
437

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aksoy M. Benzene as a leukemogenic and carcinogenic agent. Am J Ind Med. 1985;8(1):9–20. doi: 10.1002/ajim.4700080103. [DOI] [PubMed] [Google Scholar]
  2. Bailer A. J., Hoel D. G. Metabolite-based internal doses used in a risk assessment of benzene. Environ Health Perspect. 1989 Jul;82:177–184. doi: 10.1289/ehp.8982177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beliles R. P., Totman L. C. Pharmacokinetically based risk assessment of workplace exposure to benzene. Regul Toxicol Pharmacol. 1989 Apr;9(2):186–195. doi: 10.1016/0273-2300(89)90035-4. [DOI] [PubMed] [Google Scholar]
  4. Brett S. M., Rodricks J. V., Chinchilli V. M. Review and update of leukemia risk potentially associated with occupational exposure to benzene. Environ Health Perspect. 1989 Jul;82:267–281. doi: 10.1289/ehp.8982267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brodfuehrer J. I., Chapman D. E., Wilke T. J., Powis G. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat, and human. Drug Metab Dispos. 1990 Jan-Feb;18(1):20–27. [PubMed] [Google Scholar]
  6. Da Silva C., Fan X. T., Castagna M. Benzene-mediated protein kinase C activation. Environ Health Perspect. 1989 Jul;82:91–95. doi: 10.1289/ehp.898291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dean B. J. Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutat Res. 1985 Nov;154(3):153–181. doi: 10.1016/0165-1110(85)90016-8. [DOI] [PubMed] [Google Scholar]
  8. Eastmond D. A., Smith M. T., Irons R. D. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Toxicol Appl Pharmacol. 1987 Oct;91(1):85–95. doi: 10.1016/0041-008x(87)90196-7. [DOI] [PubMed] [Google Scholar]
  9. Erexson G. L., Wilmer J. L., Kligerman A. D. Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Cancer Res. 1985 Jun;45(6):2471–2477. [PubMed] [Google Scholar]
  10. Gaido K. W., Wierda D. Modulation of stromal cell function in DBA/2J and B6C3F1 mice exposed to benzene or phenol. Toxicol Appl Pharmacol. 1985 Dec;81(3 Pt 1):469–475. doi: 10.1016/0041-008x(85)90418-1. [DOI] [PubMed] [Google Scholar]
  11. Gaido K. W., Wierda D. Suppression of bone marrow stromal cell function by benzene and hydroquinone is ameliorated by indomethacin. Toxicol Appl Pharmacol. 1987 Jul;89(3):378–390. doi: 10.1016/0041-008x(87)90157-8. [DOI] [PubMed] [Google Scholar]
  12. Glatt H., Padykula R., Berchtold G. A., Ludewig G., Platt K. L., Klein J., Oesch F. Multiple activation pathways of benzene leading to products with varying genotoxic characteristics. Environ Health Perspect. 1989 Jul;82:81–89. doi: 10.1289/ehp.898281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glatt H., Witz G. Studies on the induction of gene mutations in bacterial and mammalian cells by the ring-opened benzene metabolites trans,trans-muconaldehyde and trans,trans-muconic acid. Mutagenesis. 1990 May;5(3):263–266. doi: 10.1093/mutage/5.3.263. [DOI] [PubMed] [Google Scholar]
  14. Henderson R. F., Sabourin P. J., Bechtold W. E., Griffith W. C., Medinsky M. A., Birnbaum L. S., Lucier G. W. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites. Environ Health Perspect. 1989 Jul;82:9–17. doi: 10.1289/ehp.89829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huff J. E., Haseman J. K., DeMarini D. M., Eustis S., Maronpot R. R., Peters A. C., Persing R. L., Chrisp C. E., Jacobs A. C. Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3F1 mice. Environ Health Perspect. 1989 Jul;82:125–163. doi: 10.1289/ehp.8982125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inoue O., Seiji K., Nakatsuka H., Watanabe T., Yin S. N., Li G. L., Cai S. X., Jin C., Ikeda M. Urinary t,t-muconic acid as an indicator of exposure to benzene. Br J Ind Med. 1989 Feb;46(2):122–127. doi: 10.1136/oem.46.2.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Irons R. D., Heck H., Moore B. J., Muirhead K. A. Effects of short-term benzene administration on bone marrow cell cycle kinetics in the rat. Toxicol Appl Pharmacol. 1979 Dec;51(3):399–409. doi: 10.1016/0041-008x(79)90364-8. [DOI] [PubMed] [Google Scholar]
  18. Irons R. D. Quinones as toxic metabolites of benzene. J Toxicol Environ Health. 1985;16(5):673–678. doi: 10.1080/15287398509530777. [DOI] [PubMed] [Google Scholar]
  19. Joseph S. K., Coll K. E., Cooper R. H., Marks J. S., Williamson J. R. Mechanisms underlying calcium homeostasis in isolated hepatocytes. J Biol Chem. 1983 Jan 25;258(2):731–741. [PubMed] [Google Scholar]
  20. Kalf G. F. Recent advances in the metabolism and toxicity of benzene. Crit Rev Toxicol. 1987;18(2):141–159. doi: 10.3109/10408448709089859. [DOI] [PubMed] [Google Scholar]
  21. Kalf G. F., Schlosser M. J., Renz J. F., Pirozzi S. J. Prevention of benzene-induced myelotoxicity by nonsteroidal anti-inflammatory drugs. Environ Health Perspect. 1989 Jul;82:57–64. doi: 10.1289/ehp.898257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Khan S., Krishnamurthy R., Pandya K. P. Generation of hydroxyl radicals during benzene toxicity. Biochem Pharmacol. 1990 Apr 15;39(8):1393–1395. doi: 10.1016/0006-2952(90)90017-f. [DOI] [PubMed] [Google Scholar]
  23. King A. G., Landreth K. S., Wierda D. Hydroquinone inhibits bone marrow pre-B cell maturation in vitro. Mol Pharmacol. 1987 Dec;32(6):807–812. [PubMed] [Google Scholar]
  24. Latriano L., Goldstein B. D., Witz G. Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8356–8360. doi: 10.1073/pnas.83.21.8356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Luke C. A., Tice R. R., Drew R. T. The effect of exposure regimen and duration on benzene-induced bone marrow damage in mice. II. Strain comparisons involving B6C3F1, C57B1/6 and DBA/2 male mice. Mutat Res. 1988 Aug;203(4):273–295. doi: 10.1016/0165-1161(88)90018-0. [DOI] [PubMed] [Google Scholar]
  26. Luke C. A., Tice R. R., Drew R. T. The effect of exposure regimen and duration on benzene-induced bone-marrow damage in mice. I. Sex comparison in DBA/2 mice. Mutat Res. 1988 Aug;203(4):251–271. doi: 10.1016/0165-1161(88)90017-9. [DOI] [PubMed] [Google Scholar]
  27. Maltoni C., Ciliberti A., Cotti G., Conti B., Belpoggi F. Benzene, an experimental multipotential carcinogen: results of the long-term bioassays performed at the Bologna Institute of Oncology. Environ Health Perspect. 1989 Jul;82:109–124. doi: 10.1289/ehp.8982109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morimoto K., Wolff S., Koizumi A. Induction of sister-chromatid exchanges in human lymphocytes by microsomal activation of benzene metabolites. Mutat Res. 1983 Mar;119(3):355–360. doi: 10.1016/0165-7992(83)90185-9. [DOI] [PubMed] [Google Scholar]
  29. PARKE D. V., WILLIAMS R. T. Studies in detoxication. XLIX. The metabolism of benzene containing (14C1) benzene. Biochem J. 1953 May;54(2):231–238. doi: 10.1042/bj0540231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pellack-Walker P., Blumer J. L. DNA damage in L5178YS cells following exposure to benzene metabolites. Mol Pharmacol. 1986 Jul;30(1):42–47. [PubMed] [Google Scholar]
  31. Pellack-Walker P., Walker J. K., Evans H. H., Blumer J. L. Relationship between the oxidation potential of benzene metabolites and their inhibitory effect on DNA synthesis in L5178YS cells. Mol Pharmacol. 1985 Dec;28(6):560–566. [PubMed] [Google Scholar]
  32. Post G., Snyder R., Kalf G. F. Metabolism of benzene and phenol in macrophages in vitro and the inhibition of RNA synthesis by benzene metabolites. Cell Biol Toxicol. 1986 Jun;2(2):231–246. doi: 10.1007/BF00122692. [DOI] [PubMed] [Google Scholar]
  33. Reddy M. V., Blackburn G. R., Schreiner C. A., Mehlman M. A., Mackerer C. R. 32P analysis of DNA adducts in tissues of benzene-treated rats. Environ Health Perspect. 1989 Jul;82:253–257. doi: 10.1289/ehp.8982253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rinsky R. A. Benzene and leukemia: an epidemiologic risk assessment. Environ Health Perspect. 1989 Jul;82:189–191. doi: 10.1289/ehp.8982189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rinsky R. A., Smith A. B., Hornung R., Filloon T. G., Young R. J., Okun A. H., Landrigan P. J. Benzene and leukemia. An epidemiologic risk assessment. N Engl J Med. 1987 Apr 23;316(17):1044–1050. doi: 10.1056/NEJM198704233161702. [DOI] [PubMed] [Google Scholar]
  36. Sabourin P. J., Bechtold W. E., Griffith W. C., Birnbaum L. S., Lucier G., Henderson R. F. Effect of exposure concentration, exposure rate, and route of administration on metabolism of benzene by F344 rats and B6C3F1 mice. Toxicol Appl Pharmacol. 1989 Jul;99(3):421–444. doi: 10.1016/0041-008x(89)90151-8. [DOI] [PubMed] [Google Scholar]
  37. Schlosser M. J., Shurina R. D., Kalf G. F. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase. Environ Health Perspect. 1989 Jul;82:229–237. doi: 10.1289/ehp.8982229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith M. T., Yager J. W., Steinmetz K. L., Eastmond D. A. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect. 1989 Jul;82:23–29. doi: 10.1289/ehp.898223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Snyder R., Dimitriadis E., Guy R., Hu P., Cooper K., Bauer H., Witz G., Goldstein B. D. Studies on the mechanism of benzene toxicity. Environ Health Perspect. 1989 Jul;82:31–35. doi: 10.1289/ehp.898231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tunek A., Olofsson T., Berlin M. Toxic effects of benzene and benzene metabolites on granulopoietic stem cells and bone marrow cellularity in mice. Toxicol Appl Pharmacol. 1981 Jun 15;59(1):149–156. doi: 10.1016/0041-008x(81)90462-2. [DOI] [PubMed] [Google Scholar]
  41. Tunek A., Platt K. L., Bentley P., Oesch F. Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and effects of modifications of this metabolism. Mol Pharmacol. 1978 Sep;14(5):920–929. [PubMed] [Google Scholar]
  42. Tunek A., Platt K. L., Przybylski M., Oesch F. Multi-step metabolic activation of benzene. Effect of superoxide dismutase on covalent binding to microsomal macromolecules, and identification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry. Chem Biol Interact. 1980 Dec;33(1):1–17. doi: 10.1016/0009-2797(80)90040-x. [DOI] [PubMed] [Google Scholar]
  43. Vigliani E. C. Leukemia associated with benzene exposure. Ann N Y Acad Sci. 1976;271:143–151. doi: 10.1111/j.1749-6632.1976.tb23103.x. [DOI] [PubMed] [Google Scholar]
  44. Witz G., Latriano L., Goldstein B. D. Metabolism and toxicity of trans,trans-muconaldehyde, an open-ring microsomal metabolite of benzene. Environ Health Perspect. 1989 Jul;82:19–22. doi: 10.1289/ehp.898219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Witz G., Maniara W., Mylavarapu V., Goldstein B. D. Comparative metabolism of benzene and trans,trans-muconaldehyde to trans,trans-muconic acid in DBA/2N and C57BL/6 mice. Biochem Pharmacol. 1990 Sep 15;40(6):1275–1280. doi: 10.1016/0006-2952(90)90393-y. [DOI] [PubMed] [Google Scholar]
  46. Witz G., Rao G. S., Goldstein B. D. Short-term toxicity of trans,trans-muconaldehyde. Toxicol Appl Pharmacol. 1985 Sep 30;80(3):511–516. doi: 10.1016/0041-008x(85)90396-5. [DOI] [PubMed] [Google Scholar]
  47. Yardley-Jones A., Anderson D., Jenkinson P. C., Lovell D. P., Blowers S. D., Davies M. J. Genotoxic effects in peripheral blood and urine of workers exposed to low level benzene. Br J Ind Med. 1988 Oct;45(10):694–700. doi: 10.1136/oem.45.10.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yardley-Jones A., Anderson D., Lovell D. P., Jenkinson P. C. Analysis of chromosomal aberrations in workers exposed to low level benzene. Br J Ind Med. 1990 Jan;47(1):48–51. doi: 10.1136/oem.47.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yin S. N., Li Q., Liu Y., Tian F., Du C., Jin C. Occupational exposure to benzene in China. Br J Ind Med. 1987 Mar;44(3):192–195. doi: 10.1136/oem.44.3.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van Raalte H. G. A critical look at hazards from benzene in workplace and community air. Regul Toxicol Pharmacol. 1982 Mar;2(1):67–76. doi: 10.1016/0273-2300(82)90032-0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Industrial Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES