Skip to main content
Science Progress logoLink to Science Progress
. 2009 Jul 1;92(2):93–112. doi: 10.3184/003685009X458660a

Inorganic Energetics from Mainframe to “back-of-envelope”

Harry Donald 1, Brooke Jenkins 1
PMCID: PMC10361129  PMID: 19697710

Abstract

On Thursday, 16 April 2009, Professor H. Donald. B. Jenkins presented an Exaugural Lecture to a packed audience at the University of Warwick, at a Symposium held to honour his retirement and to celebrate his 44-year career. This is a transcript of that lecture, which describes the evolution of a new approach to thermodynamics: volume-based thermodynamics (VBT) which is gaining in popularity and which is relatively simple to use. Reported also are a number of other simple relationships, capable of estimation of standard thermodynamic data, currently under development. Some of these are immensely powerful and they are described.

Keywords: modern thermodynamics, volume-based thermodynamics, thermodynamic solvate difference rule

Full Text

The Full Text of this article is available as a PDF (516.3 KB).

References

  • 1.Hao C., Sharrett S.M., and Sunderlin L. (2007) The gas-phase thermochemistry of PCl4+: a test of lattice energy calculations. Int. J. Mass Spectrom., 267, 357–362. [Google Scholar]
  • 2.Jolly W., and Gin C. (1977) The estimation of heats of formation of gaseous cations from core electron binding energies. Int. J. Mass Spectrom. Ion Phys., 25, 27–30. [Google Scholar]
  • 3.Finch A., Gates P.N., Jenkins H.D.B., and Thakur K.P. (1980) Ionic isomerism in phosphorus (V) chloride. J. Chem. Soc. Chem. Commun., 579–580. [Google Scholar]
  • 4.Jenkins H.D.B., Thakur K.P., Finch A., and Gates P.N. (1982) Isomerisation. 2. Calculations of thermodynamic properties of phosphorus (V) chloride isomers: ΔfH°(PCl+4, g), and ΔfH°(PCl-6, g). Inorg. Chem., 21, 423–426. [Google Scholar]
  • 5.Jenkins H.D.B., Sharman L., Finch A., and Gates P.N. (1996) Ionic isomerisation. 3. Estimation of the enthalpies of formation of the gaseous tetrachlorophosphonium ion, ΔfH°(PCl+4, g), and of the gaseous hexachlorophosphate ion, ΔfH°(PCl-6, g). Lattice enthalpy calculations for bis(tetrachlorophosphonium) hexachlorophosphate halides, [PCl4]2[PCl6]X where X = Cl or Br. Bond enthalpies of phoshorus(V) chloro compounds. Inorg. Chem., 35, 6316–6326. [Google Scholar]
  • 6.Cahay R., Wong P. T.T., and Whalley E. (1979) The ionization of PCl6- in the solid state under pressure. II. Raman spectra of phosphorus pentachloride III. J. Chem. Phys., 70, 5539. [Google Scholar]
  • 7.Wyckoff R.W.G. (1964) Crystal structures, Vol. 2, 2nd edn, Wiley Interscience, New York. [Google Scholar]
  • 8.Jenkins H.D.B., and Waddington T.C. (1971) Lattice energies of salts containing complex ions. Nature Phys. Sci., 232, 5–7. [Google Scholar]
  • 9.Jenkins H.D.B., and Waddington T.C. (1972) Complex salts–a reply. Nature Phys. Sci., 238, 5–7. [Google Scholar]
  • 10.Jenkins H.D.B., and Pratt K.F. (1980) LATEN–a lattice energy program. Comput. Phys. Commun., 21, 257–265. [Google Scholar]
  • 11.Jenkins H.D.B., and Pratt K.F. (1978) Calculation of the first derivatives of madelung constants with respect to cell lengths. Comput. Phys. Commun., 13, 341–348. [Google Scholar]
  • 12.Jenkins H.D.B., and Pratt K.F. (1978) Single ion properties by lattice energy minimisation. J. Chem. Soc, Faraday Trans II, 74, 968–981. [Google Scholar]
  • 13.Jenkins H.D.B., and Pratt K.F. (1977) On “basic” radii of simple and complex ions and the repulsion energy of ionic crystals. Proc. R. Soc. (Lond.), A356, 115–121. [Google Scholar]
  • 14.Muir A.S. (1991) Preparation and spectroscopic characterization of caesium hexachlorophosphate. Polyhedron, 10, 2217. [Google Scholar]
  • 15.Finch A., Fitch A.N., and Gates P.N. (1993) Crystal and molecular structure of a metastable modification of phosphorus pentachloride. J. Chem. Soc. Chem. Commun., 957. [Google Scholar]
  • 16.Jenkins H.D.B., Sharman L., Finch A., and Gates P.N. (1994) Energetics of the tetrachlorophosphonium cation, PCl4+,g, the hexachlorophosphate anion, PCl6- and metastable phosphorus (V) chloride [PCl+4]2[PCl-6][Cl-], c. Polyhedron, 13, 1481–1482. [Google Scholar]
  • 17.Mallouk T.E., Rosenthal G.L., Mueller G., Busasco R., and Bartlett N. (1984) Fluoride ion affinities of gaseous tetrafluoride and boron trifluoride from thermodynamic and structural data for (SF3)2GeF6, ClO2GeF5 and ClO2BF4. Inorg. Chem., 23, 3167–3173. [Google Scholar]
  • 18.Bartlett N. (1962) Xenon Hexafluoroplatinate(v) Xe+[PtF6]-. Proc. Chem. Soc., 218. [Google Scholar]
  • 19.Mallouk T.E. (1983) University of California, PhD thesis. [Google Scholar]
  • 20.Jenkins H.D.B. (2005) Thermodynamics of the relationship between lattice energy and lattice enthalpy. J. Chem. Ed., 82, 950–952. [Google Scholar]
  • 21.Jenkins H.D.B., Roobottom H.K., Passmore J., and Glasser L. (1999) Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg. Chem., 38, 3609–3620. [DOI] [PubMed] [Google Scholar]
  • 22.Jenkins H.D.B., Glasser L., Klapötke T.M., Crawford M.-J., Bhasin K.K., Lee J., Schrobilgen G.J., Sunderlin L., and Liebman J.F. (2004) Inorg. Chem., 43, 6238–6248. [DOI] [PubMed] [Google Scholar]
  • 23.Jenkins H.D.B. (1983. –84) In: Weast R.C. (ed.), CRC Handbook of chemistry and physics, CRC Press, Inc, Boca Raton, Florida. [Google Scholar]
  • 24.Jenkins H.D.B., and Glasser L. (2006) Volume-based thermodynamics-estimations for 2: 2 salts. Inorg. Chem., 45, 1754–1756. [DOI] [PubMed] [Google Scholar]
  • 25.Jenkins H.D.B., Tudela D, and Glasser L. (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg. Chem., 41, 2364–2367. [DOI] [PubMed] [Google Scholar]
  • 26.Glasser L., and Jenkins H.D.B. (2000) Lattice energies and unit cell volumes of complex ionic solids. J. Am. Chem. Soc., 122, 632–638. [Google Scholar]
  • 27.Jenkins H.D.B., and Glasser L. (2003) Standard absolute entropy, So298, values from volume or density. 1. Inorganic materials. Inorg. Chem., 42, 8702–8708. [DOI] [PubMed] [Google Scholar]
  • 28.Glasser L., and Jenkins H.D.B. (2003) Standard absolute entropies, So298, from volume and density. Part II. Organic liquids and solids. Thermochim. Acta, 414, 125–130. [Google Scholar]
  • 29.Jenkins H.D.B. (2008) Complex thermochemistry simplified. volume-based thermodynamics (VBT) as an approach for the estimation of standard enthalpies of formation of gas phase ions: ΔfH°(PCl+4, g) and ΔfH°(PCl-6, g). Inorg. Chem., 47, 8420–8425. [DOI] [PubMed] [Google Scholar]
  • 30.Jenkins H.D.B., and Pratt K.F. (1977) Thermochemistry of azide salts and the azide ion using direct minimisation equations to obtain the lattice energy of the univalent azide salts. J. Phys. Chem. Solids, 38, 573–579. [Google Scholar]
  • 31.Fau S., Wilson K.J., and Bartlett R.J. (2002) On stability of N+5 N-5. J. Phys. Chem. A, 106, 4639–4644. [Google Scholar]
  • 32.Dixon D.A., Feller D., Christe K.O., Wilson W.W., Vij A., Vij V., Jenkins H.D.B., Olson R.M., and Gordon M.S. (2004) Enthalpies of formation of gas-phase N3, N3-, N5 + , and N5- from ab initio molecular orbital theory, stability predictions for N3-N5+ and N5+N3-, and experimental evidence for the instability of N5+N3-. J. Am. Chem. Soc., 126, 834–843. [DOI] [PubMed] [Google Scholar]
  • 33.Jenkins H.D.B. (2007) Chemical thermodynamics–at a glance, Blackwell, Oxford. [Google Scholar]
  • 34.Christe K.O., Wilson W.W., Sheehy J.A., and Boatz J.A. (1999) N5 + : a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed., 38, 2004–2009. [DOI] [PubMed] [Google Scholar]
  • 35.Vij A., Wilson W.W., Vij V., Tham F.S., Sheehy J.A., and Christe K.O. (2001) Polynitrogen chemistry. synthesis, characterization and crystal structures of surprisingly stable fluoroantimonate Salts of N5+. J. Am. Chem. Soc., 123, 6308–6313. [DOI] [PubMed] [Google Scholar]
  • 36.Wagman D.D., Evans W.H., Parker V.B., Schumm R.H., Halow I., Bailey S.M., Churney K.L., and Nuttall R.L. (1982) The NBS tables of chemical thermodynamical properties Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11, Suppl. No. 2. [Google Scholar]
  • 37.Byrd E., and Rice B. (2009) A comparison of methods to predict solid phase heats of formation of molecular energetic salts. J. Phys. Chem. A, 113, 345–352. [DOI] [PubMed] [Google Scholar]
  • 38.Jenkins H.D.B., and Glasser L. (2002) Ionic hydrates, MpXq.nH2O: lattice energy and standard enthalpy estimation. Inorg. Chem., 41, 4378–4388. [DOI] [PubMed] [Google Scholar]
  • 39.Jenkins H.D.B., and Glasser L. (2004) Difference rule-a new thermodynamic principle: prediction of standard thermodynamic data for inorganic solvates. J. Am. Chem. Soc., 126, 15809–15817. [DOI] [PubMed] [Google Scholar]
  • 40.Glasser L., and Jenkins H.D.B. (2007) The thermodynamic solvate difference rule: solvation parameters and their use in the interpretation of the role of bound solvent in condensed-phase solvates. Inorg. Chem., 46, 9768–9778. [DOI] [PubMed] [Google Scholar]
  • 41.Jenkins H.D.B., and Liebman J.F. (2009). Extensions and corollaries of the thermodynamic solvate difference rule. J. Chem. Engng. Data, 54, 351–358. [Google Scholar]
  • 42.Brownridge S., Calhoun L., Jenkins H.D.B., Laitinen R.S., Murchie M.P., Passmore P., Pietikäinen J., Rautiainen J.M., Sanders J.C.P., Schrobilgen G.J., Suontamo R.J., Tuononen H.M., Valkonen J.U., and Wong Chi-Ming (2009) 77Se NMR spectroscopic, DFT MO, and VBT investigations of the reversible dissociation of solid (Se6I2)[AsF6]2 · 2SO2 in liquid SO2 to solutions containing 1, 4–Se6I22+ in equilibrium with Sen2+(n = 4, 8, 10) and seven binary selenium iodine cations: preliminary evidence for 1, 1, 4, 4–Se4Br42+ and cyclo–Se7Br+. Inorg. Chem., 48, 1938–1959. [DOI] [PubMed] [Google Scholar]
  • 43.Barin I. (1993) Thermochemical data of pure substances, VCH, Weinheim, FDR. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES