Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;90(1):29–50. doi: 10.3184/003685007780440521

Current Molecular Techniques for the detection of Microbial Pathogens

Luca Galluzzi a, Mauro Magnani a, Nick Saunders b, Carsten Harms c, Ian James Bruce d,*
PMCID: PMC10361161  PMID: 17455764

Abstract

Traditionally the detection of microbial pathogens in clinical, environmental or food samples has commonly needed the prelevation of cells by culture before the application of the detectionstrategy. This is done to increase cellnumber thereby overcoming problems associated with the sensitivity of classical detection strategies. However, culture-based methods have the disadvantages of taking longer, usually are more complex and require skilled personnel as well as not being able to detect viable but non cultivable microbial species. A number of molecular methods have been developed in the last 10 to 15 years to overcome these issues and to facilitate the rapid, accurate, sensitive and cost effective identification and enumeration of microorganisms which are designed to replace and/or support classical approaches to microbial detection. Amongst these new methods, ones based on the polymerase chain reaction and nucleic acid hybridization have been shown to be particularly suitable for this purpose. This review generally summarizes some of the current and emerging nucleic acid basedmolecular approaches for the detection, discrimination and quantification of microbes in environmental, food and clinical samples andincludes reference to the recently developing areas of microfluidics and nanotechnology “Lab-on-a-chip”.

Keywords: microbial pathogens, cell culture, molecular detection of microbes

Full Text

The Full Text of this article is available as a PDF (635.6 KB).

References

  • 1.Amann R. L., Ludwig W., and Schleifer K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59, 143–169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Wade W. G. (2004) Non-culturable bacteria in complex commensal populations. Adv. Appl. Microbiol., 54, 93–106. [DOI] [PubMed] [Google Scholar]
  • 3.Harry M., Gambier B., Bourezgui Y., and Garnier-Sillam E. (1999) Evaluation of purification procedures for DNA extracted from organic rich samples: interference with humic substances. Analysis, 27, 439–442. [Google Scholar]
  • 4.Magnani M., Galluzzi L., and Bruce I. J. (2006) The use of magnetic nanoparticles in the development of new molecular detection systems. J. Nanosci. Nanotechnol., 6, 2302–2311. [DOI] [PubMed] [Google Scholar]
  • 5.Smethurst D., Davies M., Howard K., Todd M., and Bruce I. J. (1997) Improved Manufacture and Application of an Agarose Magnetisable Solid-Phase Support. Appl. Biochem. Biotechnol., 68, 95–112. [DOI] [PubMed] [Google Scholar]
  • 6.Chadwick N., Bruce I. J., Davies M., Gemen B., Schukkink R., Khan K., Pounder R., and Wakefield A. (1998). A sensitive and robust method of measles RNA detection. J. Virol. Meth., 70, 59–70. [DOI] [PubMed] [Google Scholar]
  • 7.Taylor J. I., Hurst C. D., Davies M. J., Sachsinger N., and Bruce I. J. (2000) Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A, 890, 159–166. [DOI] [PubMed] [Google Scholar]
  • 8.Amagliani G., Brandi G., Omiccioli E., Casiere A., Bruce I. J., and Magnani M. (2004) Direct detection of Listeria monocytogenes from milk by magnetic based DNA isolation and PCR. Food Microbiology, 21, 597–603. [Google Scholar]
  • 9.Bruce I. J., and Sen T. (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir, 21, 7029–7035. [DOI] [PubMed] [Google Scholar]
  • 10.Galluzzi L., Bertozzini E., del Campo A., Penna A., Bruce I. J., and Magnani M. (2006) Capture probe conjugated to paramagnetic nanoparticles for purification of Alexandrium species (Dinophyceae) DNA from environmental samples. J. Appl. Microbiol., 101, 36–43. [DOI] [PubMed] [Google Scholar]
  • 11.Sen T., Sebastianelli A., and Bruce I. J. (2006) Meso-structured superparamagnetic nanospheres and nanotubes: smart materials for bioseparations. J. Am. Chem. Soc., 128, 7130–7131. [DOI] [PubMed] [Google Scholar]
  • 12.Moter A., and Gobel U. B. (2000) Fluorescence in situ hybridization (FISH) for direct visualization of micro-organisms. J. Microbiol. Meth., 41, 85–112. [DOI] [PubMed] [Google Scholar]
  • 13.Amann R., Fuchs B. M., and Behrens S. (2001) The identification of micro-organisms by fluorescence in situ hybridisation. Curr. Opin. Biotechnol., 12, 231–236. [DOI] [PubMed] [Google Scholar]
  • 14.Wagner M., Horny M., and Daims H. (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr. Opin. Microbiol., 6, 302–309. [DOI] [PubMed] [Google Scholar]
  • 15.Hosoi-Tanabe S., and Sako Y. (2006) Development and application of fluorescence in situ hybridization (FISH) method for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella in cultured and natural seawater Fish. Sci., 72, 77–82. [Google Scholar]
  • 16.Sogaard M., Stender H., and Schonheyder H. C. (2005) Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J. Clin. Microbiol., 43, 1947–1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Peters R. P., Savelkoul P. H., Simoons-Smit A. M., Danner S. A., Vandenbroucke-Grauls C. M., and van Agtmael M. A. (2006) Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J. Clin. Microbiol., 44, 119–123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Kitaguchi A., Yamaguchi N., and Nasu M. (2005) Enumeration of respiring Pseudomonas spp. in milk within 6 hours by fluorescence in situ hybridization following formazan reduction. Appl. Environ. Microbiol., 71, 2748–2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Ootsubo M., Shimizu T., Tanaka R., Sawabe T., Tajima K., and Ezura Y. (2003) Seven-hour fluorescence in situ hybridization technique for enumeration of Enterobacteriaceae in food and environmental water sample. J. Appl. Microbiol., 95, 1182–1190. [DOI] [PubMed] [Google Scholar]
  • 20.Muyzer G., de Waal E. C., and Uitterlinden A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59, 695–700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Clement B. G., Kehl L. E., De Bord K. L., and Kitts C. L. (1998) Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microbiol. Meth., 31, 135–142. [Google Scholar]
  • 22.Siqueira J. F., and Rôças I. N. (2003) PCR methodology as a valuable tool for identification of endodontic pathogens. J. Dent., 31, 333–339. [DOI] [PubMed] [Google Scholar]
  • 23.Kawasaki S., Horikoshi N., Okada Y., Takeshita K., Sameshima T., and Kawamoto S. (2005) Multiplex PCR for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli 0157:H7 in meat samples. J. Food Prot., 68, 551–556. [DOI] [PubMed] [Google Scholar]
  • 24.Metherell L., Hurst C., and Bruce I. J. (1997) Rapid, sensitive, microbial detection by gene amplification using restriction endonuclease sequences. Mol. Cell. Probes, 11, 297–308. [DOI] [PubMed] [Google Scholar]
  • 25.Mackay I. M. (2004) Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect., 10, 190–212. [DOI] [PubMed] [Google Scholar]
  • 26.Tyagi S., and Kramer F. R. (1996) Molecular beacons: probes that fluoresce upon hybridisation. Nat. Biotechnol., 14, 303–308. [DOI] [PubMed] [Google Scholar]
  • 27.Cleven B. E., Palka-Santini M., Gielen J., Meembor S., Kronke M., and Krut O. (2006) Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. J. Clin. Microbiol., 44, 2389–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Mamone T. (2003) A method for representatively amplifying genomic DNA. Genomic/Proteomic Technol., April/May 2003, 21–24. [Google Scholar]
  • 29.Compton J. (1991) Nucleic acid sequence-based amplification. Nature, 350, 91–92. [DOI] [PubMed] [Google Scholar]
  • 30.Cardoso J., Molenaar L., de Menezes R. X., Rosenberg C., Morreau H., Möslein G., Fodde R., and Boer J. M. (2004) Genomic profiling by DNA amplification of laser capture microdissected tissues and array CGH. Nucleic Acids Res., 32, e146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Pettersson E., Lindskog M., Lundeberg J., and Ahmadian A. (2006) Trinucleotide threading for parallel amplification of minute amounts of genomic DNA. Nucleic Acids Res., 34, e49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Antwerpen M. H., Schellhase M., Ehrentreich-Forster E., Bier F., Witte W., and Nubel U. (2006) DNA microarray for detection of antibiotic resistance determinants in Bacillus anthracis and closely related Bacillus cereus. Mol. Cell. Probes, Oct 18, [Epub ahead of print], [DOI] [PubMed] [Google Scholar]
  • 33.Rota P. A., Oberste M. S., Monroe S. S., Nix W. A., Campagnoli R., Icenogle J. P., Penaranda S., Bankamp B., Maher K., Chen M. H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J. L., Chen Q., Wang D., Erdman D. D., Peret T. C., Burns C., Ksiazek T. G., Rollin P. E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A. D., Drosten C., Pallansch M. A., Anderson L. J., and Bellini W. J. (2003) Characterization of a novel Coronavirus associated with Severe Acute Respiratory Syndrome. Science, 300, 1394–1397. [DOI] [PubMed] [Google Scholar]
  • 34.Saunders N. A., Underwood A., Kearns A. M., and Hallas G. (2004) A virulence-associated gene microarray: a tool for investigation of the evolution and pathogenic potential of Staphylococcus aureus. Microbiol., 150, 3763–3771. [DOI] [PubMed] [Google Scholar]
  • 35.Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J., Hornik K., Hothorn T., Huber W., Iacus S., Irizarry R., Leisch F., Lil C., Maechler M., Rossini A. J., Sawitzki G., Smith C., Smyth G., Tierney L., Yang J. Y. H., and Zhang J. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5, R80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Call D. R., Borucki M. K., and Loge F. J. (2003) Detection of bacterial pathogens in environmental samples using DNA microarrays. J. Microbiol. Meth., 53, 235–243. [DOI] [PubMed] [Google Scholar]
  • 37.Weiner J. III, Zimmerman C.-U., Gohlmann H. W. H., and Herman R. (2003) Transcription profiles of the bacterium Mycoplasma pneumoniae at different temperatures. Nucl. Acids Res., 31, 6306–6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Franke-Whittle I. H., Klammer S.-H., and Insam H. (2005) Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J. Microbiol. Meth., 62, 37–56. [DOI] [PubMed] [Google Scholar]
  • 39.Bodrossy L., and Sessitsch A. (2004) Oligonucleotide microarrays in microbial diagnostics. Curr. Opin. Microbiol., 7, 245–254. [DOI] [PubMed] [Google Scholar]
  • 40.Ye R. W., Wang T., Bedzyk L., and Croker K. M. (2001) Applications of DNA microarrays in microbial systems. J. Microbiol. Meth., 47, 257–272. [DOI] [PubMed] [Google Scholar]
  • 41.Cho J.-C., and Tiedje J. M. (2002) Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbiol., 68, 1425–1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Troesch A., Nguyen H., Mitada C. G., Desvarenne S., Gingeras T. R., Kaplan P. M., Cros P., and Mabilat C. (1999) Mycobacterium species identification and rifampin resistance testing with high density DNA probe arrays. J. Clin. Microbiol., 37, 49–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Bekal S., Brousseau R., Masson L., Prefontaine G., Fairbrother J., and Harel J. (2003) Rapid identification of Escherichia coli pathotypes by virulence gene detection with DNA microarrays. J. Clin. Microbiol., 41, 2113–2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Volokhov D., Rasooly A., Chumakov K., and Chizhikov V. (2002) Identification of Listeria species by microarray-based assay. J. Clin. Microbiol., 40, 4720–4728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Wang R.-F., Beggs M. L., Robertson L. H., and Cerniglia C. E. (2002) Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol. Lett., 213, 175–182. [DOI] [PubMed] [Google Scholar]
  • 46.Wilson W. J., Strout C. L., DeSantis T. Z., Stilwell J. L., Carrano A. V., and Anderson G. L. (2002) Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Molec. Cell. Probes, 16, 119–127. [DOI] [PubMed] [Google Scholar]
  • 47.Keer J. T., and Birch L. (2003) Molecular methods for assessment of bacterial viability. J. Microbiol. Meth., 53, 175–183. [DOI] [PubMed] [Google Scholar]
  • 48.Kohler J. M., and Henkel T. (2005) Chip devices for miniaturized biotechnology. Appl. Microbiol. Biotechnol., 69, 113–125. [DOI] [PubMed] [Google Scholar]
  • 49.Liu W. T., and Zhu L. (2005) Environmental microbiology-on-a-chip and its future impacts. Trends Biotechnol., 23, 174–179. [DOI] [PubMed] [Google Scholar]
  • 50.Liu R. H., Yang J., Lenigk R., Bonanno J., and Grodzinski P. (2004) Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection. Anal. Chem., 76, 1824–1831. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES