Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;90(1):15–27. doi: 10.3184/003685007780440549

Cold Shock Proteins Aid coupling of Transcription and Translation in Bacteria

Walid M El-Sharoud 1,, Peter L Graumann 2
PMCID: PMC10361162  PMID: 17455763

Abstract

Transcription and translation are tightly coupled in bacterial cells. However, the transcription machinery and ribosomes generally occupy different subcellular regions in bacteria such as Escherichia coli and Bacillus subtilis, indicating the need for (a) mechanism(s) coupling these processes. A prime function of this mechanism(s) would be ensuring the transfer of unfolded mKNA from the nucleoid to ribosomes, which require linear mRNA for the initiation of translation. During conditions of a sudden decrease in temperature (cold shock), secondary structures in mRNA would pose an even greater problem for the initiation process. Two conserved classes of proteins, cold shock proteins (CSPs) and cold induced RNA helicases (CSHs), appear to be major players in the prevention of secondary mRNA structures and in transcription/translation coupling. CSPs are general mRNA-binding proteins, and like CSH-type RNA helicases, the presence of at least one csp gene in the cell is essential for viability. Members of both protein families have recently been shown to interact, suggesting that a two-step process achieves the coupling process, removal of secondary mRNA structures through CSHs and prevention of reformation through CSPs.

Keywords: cold shock, cold shock proteins, transcription, translation, mRNA, ribosomes, nucleoid

Full Text

The Full Text of this article is available as a PDF (464.4 KB).

References

  • 1.Graumann P., and Marahiel M. A. (1996) Some like it cold: response of microorganisms to cold shock. Arch. Microbiol., 166, 293–300. [DOI] [PubMed] [Google Scholar]
  • 2.Wouters J. A., Rombouts F. M., Kuipers O. P., De Vos W. M., and Abee T. (2000) The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. System. Appl. Microbiol., 23, 165–173. [DOI] [PubMed] [Google Scholar]
  • 3.McLauchlin J. (1997) The pathogenicity of Listeria monocytogenes: a public health perspective. Rev. Med. Microbiol., 8, 1–14. [Google Scholar]
  • 4.Graumann P. L., and Marahiel M. A. (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci., 23, 286–290. [DOI] [PubMed] [Google Scholar]
  • 5.Phadtare S., Yamanaka K., and Inouye M. (2000) The cold shock response. p. 33–45. In: Storz G., and Hengge-Aronis R. (eds.), Bacterial Stress Responses, ASM Press, Washington, D.C. [Google Scholar]
  • 6.Hunger K., Beckering C. L., Wiegeshoff F., Graumann P. L., and Marahiel M. A. (2006) Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J. Bacteriol., 188, 240–248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Annous B. A., Becker L. A., Bayles D. O., Labeda D. P., and Wilkinson B. J. (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol., 63, 3887–3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Russell N. J., and Fukanaga N. (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Rev., 75, 171–182. [Google Scholar]
  • 9.Ko R., Smith L. T., and Smith G. M. (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol., 176, 426–431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Murata N., and Wada H. (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem. J., 308, 1–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Mizushima T., Kataoka K., Ogata Y., Inoue R., and Sekimizu K. (1997) Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Molec. Microbiol., 23, 381–386. [DOI] [PubMed] [Google Scholar]
  • 12.Krispin O., and Allmansberger R. (1995) Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol. Lett., 134, 129–135. [DOI] [PubMed] [Google Scholar]
  • 13.Grau R., Gardiol D., Glikin G. C., and de Mendoza D. (1994) DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Molec. Microbiol., 11, 933–941. [DOI] [PubMed] [Google Scholar]
  • 14.Nakaminami K., Karlson D. T., and Imai R. (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc. Nat. Acad. Sci. USA, 103, 10122–10127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Yamanaka K., Mitani T., Ogura T., Niki H., and Hiraga S. (1994) Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Molec. Microbiol., 13, 301–312. [DOI] [PubMed] [Google Scholar]
  • 16.Hu K. H., Liu E., Dean K., Gingras M., Degraff W., and Trun N. J. (1996) Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics, 143, 1521–1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Graumann P., Wendrich T. M., Weber M. H. W., Schröder K., and Marahiel M. A. (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Molec. Microbiol., 25, 741–756. [DOI] [PubMed] [Google Scholar]
  • 18.Xia B., Ke H., and Inouye M. (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Molec. Microbiol., 40, 179–188. [DOI] [PubMed] [Google Scholar]
  • 19.Hanna M. M., and Liu K. (1998) Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. J. Molec. Biol., 282, 227–239. [DOI] [PubMed] [Google Scholar]
  • 20.Max K. E., Zeeb M., Bienert R., Balbach J., and Heinemann U. (2006) T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB. J. Molec. Biol., 360, 702–714. [DOI] [PubMed] [Google Scholar]
  • 21.Zeeb M., Max K. E., Weininger U., Low C., Sticht H., and Balbach J. (2006) Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution. Nucl. Acids Res. (in press). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Brandi A., Pon C. L., and Gualerzi C. O. (1994) Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Biochimie, 76, 1090–1098. [DOI] [PubMed] [Google Scholar]
  • 23.Brandi A., Pietroni P., Gualerzi C. O., and Pon C. L. (1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Molec. Microbiol., 19, 231–240. [DOI] [PubMed] [Google Scholar]
  • 24.Jiang W., Hou Y., and Inouye M. (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem., 272, 196–202. [DOI] [PubMed] [Google Scholar]
  • 25.Bae W., Xia B., Inouye M., and Severinov K. (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Nat. Acad. Sci. USA, 97, 7784–7789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Schindler T., Graumann P. L., Perl D., Ma S., Schmid F. X., and Marahiel M. A. (1999) The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J. Biol. Chem., 274, 3407–3413. [DOI] [PubMed] [Google Scholar]
  • 27.Graumann P. L., and Marahiel M. A. (1994) The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG-and CCAAT sequences in single stranded oligonucleotides. FEBS Lett., 338, 157–160. [DOI] [PubMed] [Google Scholar]
  • 28.Lewis P. J., Thakerm S. D., and Errington J. (2000) Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J., 15, 710–718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Azam T. A., Hiraga S., and Ishihama A. (2000) Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells, 5, 613–626. [DOI] [PubMed] [Google Scholar]
  • 30.Miller O. L. Jr., Hamkalo B. A., and Thomas C. A. Jr. (1970) Visualization of bacterial genes in action. Science, 169, 392–395. [DOI] [PubMed] [Google Scholar]
  • 31.Mascarenhas J., Weber M. H., and Graumann P. L. (2001) Specific polar localization of ribosomes in Bacillus subtilis. EMBO, 2, 685–689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bouvet P., and Wolffe A. P. (1994) A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell, 77, 931–941. [DOI] [PubMed] [Google Scholar]
  • 33.Weber M. H., Bechering C. L., and Marahiel M. A. (2001) Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J. Bacteriol., 183, 7381–7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Chamot D., Magee W. C., Yu E., and Owttrim G. W. (1999) A cold shock-induced cyanobacterial RNA helicase. J. Bacteriol., 181, 1728–1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lim J., Thomas T., and Cavicchioli R. (2000) Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J. Molec. Biol., 297, 553–567. [DOI] [PubMed] [Google Scholar]
  • 36.Beckering C. L., Steil L., Weber M. H., Volker U., and Marahiel M. (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol., 184, 6395–6402. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES