Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;89(2):71–138. doi: 10.3184/003685006783238344

Remediation Strategies for Historical Mining and Smelting Sites

Agnieszka Dybowska a,b, Margaret Farago a,c, Eugenia Valsami-Jones b, Iain Thornton a
PMCID: PMC10361168  PMID: 17240694

Abstract

The environmental, social and economic problems associated with abandoned mine sites are serious and global. Environmental damage arising from polluted waters and dispersal of contaminated waste is a feature characteristic of many old mines in North America, Australia, Europe and elsewhere. Today, because of the efficiency of mining operations and legal requirements in many countries for prevention of environmental damage from mining operations, the release of metals to the environment from modern mining is low. However, many mineralized areas that were extensively worked in the 18th and 19th centuries and left abandoned after mining had ceased, have left a legacy of metal contaminated land.

Unlike organic chemicals and plastics, metals cannot be degraded chemically or biologically into non-toxic and environmentally neutral constituents. Thus sites contaminated with toxic metals present a particular challenge for remediation. Soil remediation has been the subject of a significant amount of research work in the past decade; this has resulted in a number of remediation options currently available or being developed.

Remediation strategies for metal/metalloid contaminated historical mining sites are reviewed and summarized in this article. It focuses on the current applications of in situ remediation with the use of soil amendments (adsorption and precipitation based methods are discussed) and phytoremediation fin situ plant based technology for environmental clean up and restoration). These are promising alternative technologies to traditional options of excavation and ex situ treatment, offering an advantage of being non-invasive and low cost. In particular, they have been shown to be effective in remediation of mining and smelting contaminated sites, although the long-term durability of these treatments cannot be predicted.

Keywords: remediation strategies, historical mining and smelting sites, in situ metal immobilization, phytoremediation

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

References

  • 1.Adriano D. C. (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer-Verlag, New York. [Google Scholar]
  • 2.Adriano D. C., Bolans N. S., Koo B-J., Naidu R., Lelie D., Vangrosveld J., and Wenzel W. W. (2002) Natural remediation processes: bioavailability interactions in contaminated soils. 17th WCSS, 14–21st August, 2002, Paper no. 501, Thailand.
  • 3.Adriano D. C., Wenzel W. W., Vangronsveld J., and Bolan N. S. (2004) Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142. [Google Scholar]
  • 4.Al Wabel M. A., Heil D. M., Westfall D. G., and Barbarick K. A. (2002) Solution chemistry influence on metal mobility in biosolids-amended soils. J. Environ. Qual., 31, 1157–1165. [DOI] [PubMed] [Google Scholar]
  • 5.Alloway B. J. (1995) Heavy Metals in Soils. Blackie Academic & Professional, London. [Google Scholar]
  • 6.Alloway B. J., and Ayres D. C. (1997) Chemical Principles of Environmental Pollution. Blackie Academic Professional, London. [Google Scholar]
  • 7.Arthur E. L., Rice P. J., Anderson T. A., Baladi S. M., Henderson K. L. D., and Coats J. R. (2005) Phytorernediation–An overview. Crit. Rev.Plant Sci., 24(2), 109–122. [Google Scholar]
  • 8.Arthur S. E., Brady P. V., Cygan R. T., Anderson H. L., and Westrich H. R. (1999) Irreversible sorption of contaminants during ferrihydrite transformation. Proceedings of the Waste Management Conference WM'99, Tuscon, pp. 1–14. Department of Energy, US. [Google Scholar]
  • 9.Artiola J. F., Zabcik D., and Johnson S. H. (1990) In situ treatment of arsenic contaminated soil from a hazardous industrial site: laboratory studies. Waste Manag., 10, 73–78. [Google Scholar]
  • 10.Atkinson K., Edwards R. P., Mitchell P. B., and Waller C. (1990) Roles of industrial minerals in reducing the impact of metalliferous mine waste in Cornwall. T I Min. Metal., A., 99, A158–A172. [Google Scholar]
  • 11.Awad F., and Romheld V. (2000) Mobilization of heavy metals from contaminated calcareous soils by plant born, microbial and synthetic chelators and their uptake by wheat plants. J. Plant Nutr., 23, 1847–1855. [Google Scholar]
  • 12.Baker A. J. M. (1987) Metal tolerance. New Phytologist, 106, 93–111. [Google Scholar]
  • 13.Baker A. J. M., and Brooks R. R. (1989) Terrestrial higher plants which hyperaccumulate metallic elements–A review of theory distribution, ecology and phytochemistry. Biorecovery, 1, 81–126. [Google Scholar]
  • 14.Banks D., Younger P. L., Arnesen R. T., Iversen E. R., and Banks S. B. (1997) Mine-water chemistry: the good, the bad and the ugly. Environ. Geol., 32, 157–174. [Google Scholar]
  • 15.Barbour A. K. (1994) Mining non-ferrous metals. In: Hester R. E., and Harrison R. M. (ed.), Mining and Its Environmental Impact, pp. 1–15. The Royal Society of Chemistry, Cambridge. [Google Scholar]
  • 16.Barry G. A., Chudek P. J., Best E. K., and Moody P. W. (1995) Estimating sludge application to land based on heavy metal and phosphorus sorption characteristics of soil. Water Res., 29, 2031–2034. [Google Scholar]
  • 17.Basta N. T., Gradwohl R., Snethen K. L., and Schroeder J. L. (2001) Chemical immobilization of lead, zinc and cadmium in smelter contaminated soils using biosolids and rock phosphate. J. Environ. Qual., 30, 1222–1230. [DOI] [PubMed] [Google Scholar]
  • 18.Basta N. T., and McGowen S. L. (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in smelter-contaminated soil. Environ. Pollut., 127, 73–82. [DOI] [PubMed] [Google Scholar]
  • 19.Benson L. M., Porter E. K., and Peterson P. J. (1981) Arsenic accummulation and genotypic variation in plants on arsenical mine wastes in SW England. J. Plant Nutr., 3, 655–666. [Google Scholar]
  • 20.Berti W. R., and Cunningham S. D. (2000) Phytostabilisation of metals. In: Raskin I., and Ensley B. D. (eds.), Phytoremediation of Toxic metals: Using Plants to Clean Up the Environment, pp. 71–88. John Wiley & Sons, New York. [Google Scholar]
  • 21.Besser J. M., and Rabeni C. F. (1987) Bioavailability and toxicity of metals leached from lead-mine tailings to aquatic invertebrates. Environ. Toxicol. Chem., 6, 879–890. [Google Scholar]
  • 22.Bish D. L., and Ming D. W. (2001) Natural Zeolites: Occurrence, Properties, Applications. Reviews in Mineralogy and Geochemistry, Vol. 45. Mineralogical Society of America, Washington, DC. [Google Scholar]
  • 23.Blaylock M. J., Salt D. E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B. D., and Raskin I. (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Techno., 31, 860–865. [Google Scholar]
  • 24.Bleeker P. M., Assuncao A. G. L., Teiga P. M., de Koe T., and Verkleij J. A. C. (2002) Revegetation of the acidic, As contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses. Sci. Total Environ., 300, 1–13. [DOI] [PubMed] [Google Scholar]
  • 25.Boisson J., Ruttens A., Mench M., and Vangrosveld J. (1999) Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environ. Pollut., 104, 225–233. [Google Scholar]
  • 26.Bolan N. S., and Duraisamy V. P. (2003) Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals; a review involving specific case studies. Aust. J. Soil Res., 41(3), 533–555. [Google Scholar]
  • 27.Bolton J. (1975) Liming effects on toxicity to perennial ryegrass of a sewage sludge contaminated with zinc, nickel, copper and chromium. Environ. Pollut., 9, 295–304. [Google Scholar]
  • 28.Bothe J. V., and Brown P. W. (1999) Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol., 33, 3806–3811. [Google Scholar]
  • 29.Bradley S. B., and Cox J. J. (1986) Heavy metals in the hamps and manifold valleys, North Staffordshire, UK: Distribution in floodplain soils. Sci. Total Environ., 50, 103–128. [Google Scholar]
  • 30.Bradley R., Burt A. J., and Read D. J. (1981) Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 292, 335–337. [Google Scholar]
  • 31.Bradshaw A. D. (1952) Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature, 169, 1098. [DOI] [PubMed] [Google Scholar]
  • 32.Brewer E. P., Saunders J. A., Angle J. S., Chaney R. L., and Mcintosh M. S. (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor. Appl. Genet., 99, 761–771. [Google Scholar]
  • 33.BRGM, (2001) Management of Mining, Quarrying and Ore-processing Waste in the European Union. Study made for Directorate-General Environment, European Commission. BRGM/RP-50319-F. Available on line at: http://europa.eu.int/comm/environment/waste/studies/mining/0204finalreportbrgm.pdf Accessed December 2005. [Google Scholar]
  • 34.Brooks R. R., Chiarucci A., and Jaffre T. (1998) Revegetation and stabilisation of mine dumps and other degraded terrain. In: Brooks R. R. (ed.), Plants that Hyperaccummulate Heavy Metals, pp. 227–247. Wallingford: CAB International. [Google Scholar]
  • 35.Brown K. W. (1997) Decontamination of polluted soils. In: Iskandar I. K., and Adriano D. C. (eds.), Advances in Environmental Science: Remediation of Soils Contaminated with Metals, pp. 47–84. Science Reviews, Northwood. [Google Scholar]
  • 36.Brown S. L., Henry S. L., Chaney R., Compton H., and DeVolder P. S. (2003) Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas. Plant Soil, 249, 203–215. [Google Scholar]
  • 37.Burt R., Wilson M. A., Keck T. J., Dougherty B. D., Strom D. E., and Lindahl J. A. (2003) Trace element speciation in selected smelter contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA. Adv. Environ. Res., 8, 51–67. [Google Scholar]
  • 38.Camm G. S., Butcher A. R., Pirrie D., Hughes P. K., and Glass H. J. (2003) Secondary mineral phases associated with a historic arsenic calciner identified using automated scanning electron microscopy; a pilot study from Cornwall, UK. Miner. Eng., 16, 1269–1277. [Google Scholar]
  • 39.Cao R. X., Ma L. Q., Chen M., Singh S. P., and Harris W. G. (2002) Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ. Sci. Technol., 36(24), 5296–5304. [DOI] [PubMed] [Google Scholar]
  • 40.Cao R. X., Ma L. Q., Chen M., Singh S. P., and Harris W. G. (2003. a) Phosphate-induced metal immobilization in a contaminated site. Environ. Pollut., 122, 19–28. [DOI] [PubMed] [Google Scholar]
  • 41.Cao R. X., Ma L. Q., and Shiraripour A. (2003. b) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator Pteris vittata L. Environ. Pollut., 126, 157–167. [DOI] [PubMed] [Google Scholar]
  • 42.Cao R. X., Ma L. Q., Rhue D. R., and Appel C. S. (2004) Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ. Pollut., 131, 435–444. [DOI] [PubMed] [Google Scholar]
  • 43.Cave M. R., Wragg J., Palumbo B., and Klinck B. A. (2002) Measurement of the Bioaccessibility of Arsenic in UK Soils. British Geological Survey, Environment Agency, R&D Technical Report P5–062/TR02. [Google Scholar]
  • 44.Chairidchai P., and Ritchie G. S. P. (1990) Zinc adsorption by lateritic soil in the presence of organic ligands. Soil. Sci. Soc. Am. J., 54, 1242–1248. [Google Scholar]
  • 45.Chaney R. L., Brown S. L., Angle J. S., Stuczynski T. I., Daniels W. L., Henry C. L., Siebielec G., Li Y. M., Malik M., Ryan J. A., and Compton H. (2000. a) In situ remediation/restoration of metals contaminated soils using tailor-made biosolids mixtures, Proceedings from the Symposium on Mining, Forest and Land Restoration: The Successful Use of Residuals, Biosolids, Organic Matter for Reclamation Activities, pp. 1–23. Rocky Mountain Water Environment Association, Denver, CO. [Google Scholar]
  • 46.Chaney R. L., Li Y. M., Angle J. S., Baker A. J. M., Reeves R. D., Browm S. L., Homer F. A., Malik M., and Chin M. (2000. b) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: Approaches and progress. In: Terry N., and Banuelos G. (eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, FL. [Google Scholar]
  • 47.Chen M., Ma L. Q., Singh S. P., Cao R. X., and Melamed R. (2003) Field demonstration of in situ immobilization of soil Pb using P amendments. Adv. Environ. Res., 8, 93–102. [Google Scholar]
  • 48.Chirenje T., and Ma L. Q. (1999) Effects of acidification on metal mobility in papermillash amended soil. J. Environ. Qual., 28(3), 760–766. [Google Scholar]
  • 49.Chlopecka A., and Adriano D. C. (1996) Mimicked in situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Environ. Sci. Technol., 30, 3294–3303. [Google Scholar]
  • 50.Chopin E. I. B., Black S., Hodson M. E., Coleman M. L., and Alloway B. J. (2003) A preliminary investigation into mining and smelting impacts on trace element concentrations in the soils and vegetation around Tharsis, SW Spain. Mineral. Mag., 67(2), 279–288. [Google Scholar]
  • 51.Chukhlantsev V. G. (1956) Solubility products of arsenates. J. Inorg. Chem.-USSR, 1, 1975–1982. [Google Scholar]
  • 52.Clemente R., Walker D. J., and Pilar Bernai M. (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): The effect of soil amendments. Environ. Pollut., 138(1), 46–58. [DOI] [PubMed] [Google Scholar]
  • 53.Comba P., Dahnke D. R., and Twidwell L. G. (1987) Arsenic removal from process and wastewaters. In: Reddy G. R., Hendrix L. J., and Queneau P. B. (eds.), Arsenic Metallurgy Fundamentals and Applications, pp. 305–319. The Metallurgical Society Inc., Warrendale, Pennsylvania. [Google Scholar]
  • 54.Concas A., Ardau C., Cristini A., Zuddas P., and Cao G. (2006) Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site. Chemosphere, 63, 244–253. [DOI] [PubMed] [Google Scholar]
  • 55.Contaminated Land Rehabilitation Network for Environmental Technologies (CLARINET) (2002) Remediation of Contaminated Land: Technology Implementation in Europe. A report from the Contaminated Land Rehabilitation Network for Environmental Technologies Federal Environment Agency, Austria. available online at: http://www.clarinet.at/library/WG7_Final_Report.pdf. Accessed January 2006.
  • 56.Coppola E. I., Battaglia G., Bucci M., Ceglie D., Colella A., Langella A., Buondonno A., and Colella C. (2003) Remediation of Cd- and Pb-polluted soil by treatment with organozeolite conditioner. Clay Clay Miner., 51(6), 609–615. [Google Scholar]
  • 57.Cornell R. M., and Schwertmann U. (1996) The Iron Oxides, Structure, Properties, Occurrence and Uses. VCH, Weinham, Germany. [Google Scholar]
  • 58.Cotter-Howells J., and Caporn S. (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl. Geochem., 11, 335–342. [Google Scholar]
  • 59.Cox R. M., and Hutchinson T. C. (1980) Multiple metal tolerance in the grass Deschampsia cespitosa (L.) Beauv. from Sadbury smelting area. New Phytol., 84, 631–647. [Google Scholar]
  • 60.Craw D. (2005) Potential anthropogenic immobilization of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand. J. Environ. Manag., 74, 283–292. [DOI] [PubMed] [Google Scholar]
  • 61.Crowley D. E., Wang Y. C., Reid C. P. P., and Szaniszlo P. J. (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant Soil, 130, 179–198. [Google Scholar]
  • 62.Cunnigham S. D., and Ow D. W. (1996) Promises and prospects of phytoremediation. Plant Physiol., 110, 715–719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Daniels W. L., Stuczynski T., Chaney R. L., Pantuck K., and Pistelok F. (1998) Reclamation of Pb/Zn smelter wastes in Upper Silesia, Poland. In: Fox H. R., Moore H. M., and Mcintosh A. D. (eds.), Land Reclamation: Achieving Sustainable Benefits, pp. 269–276. Balkema, Rotterdam, The Netherlands. [Google Scholar]
  • 64.Department of the Environment Transport and the Regions (DETR) (2000) Contaminated land: Environmental Protection Act 1990 part IIA. DETR circular, Department of the Environment, Transport and the Regions 2000/02. Available online at: http://www.defra.gov.uk/environment/land/contaminated/circ2-2000/index.htm Accessed January 2006.
  • 65.Dixit S., and Hering J. G. (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol., 37, 4182–4189. [DOI] [PubMed] [Google Scholar]
  • 66.Do Nascimento C. W. A., and Xing B. S. (2006) Phytoextraction: A review on enhanced metal availability and plant accumulation. Scientia Agricola, 63(3), 299–311. [Google Scholar]
  • 67.Dold B. (2000) Basic concepts in environmental geochemistry of sulfide mine waste, Memorias de XIX Curso International de Postgrado en Metalogenia. International UNESCO & SEG Short course in Metalogenesis, Quito, Ecuador. Available online at: http://www.unil.ch/webdav/site/cam/users/jlavanch/public/Le_personnel/Dold_Basicconcepts.pdf Accessed January 2006.
  • 68.Dove P. M., and Rimstidt D. (1985) The solubility of scorodite, FeAsO4 2H2O. Am. Mineral., 70, 838–844. [Google Scholar]
  • 69.Dutre V., Vandecasteele C., and Opdenakker S. (1999) Oxidation of arsenic-bearing fly ash as pretreatment before solidification. J. Hazard. Mater., B68, 205–215. [DOI] [PubMed] [Google Scholar]
  • 70.Dutre V., and Vandecasteele C. (1995) Solidification/stabilization of arsenic-containing waste: leach tests and behavior of arsenic in the leachate. Waste Manag., 15, 55–62. [Google Scholar]
  • 71.Dybowska A. D. (2006) Remediation Options for a Site Contaminated with Arsenic and Copper by Past Mining and Smelting Activities. PhD Thesis, University of London. [Google Scholar]
  • 72.Dzombak D. A., and Morel F. M. M. (1990) Surface Complexation Modelling: Hydrous Ferric Oxide. New York, Wiley. [Google Scholar]
  • 73.Edwards R., Rebedea I., Lepp N. W., and Lowell A. J. (1999) An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils. Environ. Geochem. Hlth., 21, 157–173. [Google Scholar]
  • 74.Environmental Protection Agency (EPA) (1997) Recent Developments for In Situ Treatment of Metal Contaminated Soils Environmental Protection Agency, Washington D.C. [Google Scholar]
  • 75.Environmental Protection Agency (EPA) (2000) Innovative Remediation Technologies: Field-Scale Demonstration Projects in North America, 2nd Edition Office of Solid Waste and Emergency Response, Environmental Protection Agency EPA 542-B-00-004.
  • 76.Ernst W. (1996) Bioavailability of heavy metals and decontamination of soil by plants. Appl. Geochem., 11, 163–167. [Google Scholar]
  • 77.Ernst W. (2005) Phytoextraction of mine wastes–Options and impossibilities. Chemie der Erde, 65, 29–42. [Google Scholar]
  • 78.Ferreira da Silva E., Cardoso Fonseca E., Matos J. X., Patinha C., Reis P., and Santos Oliveira J. M. (2005) The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the Lousal area (Iberian pyrite belt), Southern Portugal. Land Degrad. Dev., 16, 213–228. [Google Scholar]
  • 79.Fields S. (2003) The Earth's Open Wounds: Abandoned and Orphaned Mines. Environ. Health Persp., 111(3), 154–161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Fitz W. J., and Wenzel W. W. (2002) Arsenic transformations in the soil/rhizosphere/plant system: fundamentals and potential application to phytoremediation. J. Biotechnol., 99, 259–278. [DOI] [PubMed] [Google Scholar]
  • 81.Francesconi K., Visoottiviseth P., Sridokchan W., and Goessler W. (2001) Arsenic species in an arsenic hyperaccumulating fern Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ., 284, 27–35. [DOI] [PubMed] [Google Scholar]
  • 82.Fréry N., Maury-Brachet R., Maillot E., Deheeger M., de Mérona B., and Boudou A. (2001) Gold-mining activities and mercury contamination of native Amerindian communities in French Guiana: Key role of fish in dietary uptake. Environ. Health Persp., 109(5), 449–456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Friesl W., Lombi E., Horak O., and Wenzel W. W. (2003) Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. J. Plant Nutr. Soil Sci., 166(2), 191–196. [Google Scholar]
  • 84.Garrido F., Illera V., and Garcia-Gonzales M. T. (2005) Effect of the addition of gypsum- and lime-rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Appl. Geochem., 20, 397–408. [Google Scholar]
  • 85.Geebelen W., Adriano D. C., Van der Lelie D., Mench D., Carleer M., Clijsters R., and Vangronsveld J. (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil, 249, 217–228. [Google Scholar]
  • 86.Glass D. J. (1999) Current market trends in phytoremediation. Int. J. Phytorem., 1(1), 1–8. [Google Scholar]
  • 87.Grant C. D., Campbell C. J., and Charnock N. R. (2002) Selection of species suitable for derelict mine site rehabilitation in New South Wales, Australia. Water Air Soil Pollut., 139, 215–235. [Google Scholar]
  • 88.Gray C., McGrath S., and Sweeney R. (2005) Phytoextraction of Metals: Investigation of Hyperaccummulation and Field Testing, CL:AIRE Research Project Report: RP6, CL:AIRE, London.
  • 89.Gworek B. (1992) Inactivation of cadmium in contaminated soils using synthetic zeolites. Environ. Pollut., 75, 269–271. [DOI] [PubMed] [Google Scholar]
  • 90.Hamilton E. I. (2000) Environmental variables in a holistic evaluation of land contaminated by historic mine wastes: a study of multielement mine wastes in West Devon, England, using arsenic as an element of potential concern to human health. Sci. Total Environ., 249, 171–221. [DOI] [PubMed] [Google Scholar]
  • 91.Hamon R. E., McLaughlin M. J., and Cozens G. (2002) Mechanisms of attenuation of metal availability in situ remediation treatments. Environ. Sci. Technol., 36, 3991–3996. [DOI] [PubMed] [Google Scholar]
  • 92.Hartley W., Edwards R., and Lepp N. W. (2004) Arsenic and heavy metal mobility in iron-oxide amended contaminated soils as evaluated by short- and long-term leaching tests. Environ. Pollut., 131, 495–504. [DOI] [PubMed] [Google Scholar]
  • 93.Hester R. E., and Harrison R. M. (1994) Mining and its Environmental Impact. Royal Society of Chemistry, Cambridge. [Google Scholar]
  • 94.Hester R. E., and Harrison R. M. (1997) Contaminated Land and Its Reclamation. The Royal Society of Chemistry, Cambridge. [Google Scholar]
  • 95.Hodson M. E., Valsami-Jones E., Collins M., Cotter-Howells J. D., Dubbin W. E., Kemp A., Paton G., and Warren A. (1999) Bone meal treatments for the remediation of metal contaminated soils. In: Stanley C. J. et al. (eds.), Mineral Deposits: Processes to processing, Vol. 2, pp. 1183–1186. Rotterdam: Balkema. [Google Scholar]
  • 96.Hodson M. E., and Valsami-Jones E. (2000. a) Remediation of Toxic Metal Pollution in Soil Using Bone Meal. Environment Agency, R&D Technical Report P234. [Google Scholar]
  • 97.Hodson M. E., and Valsami-Jones E. (2000. b) Can metal phosphates formation in soils be used as a treatment for metal contaminated soil. Land Contam. Recl., 8, 153–165. [Google Scholar]
  • 98.Hodson M. E., Valsami-Jones E., and Cotter-Howells J. D. (2000) Metal phosphates and remediation of contaminated land. In: Cotter-Howells J. D., Campbell L.S., Valsami-Jones E., and Batchelder M. (eds.), Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management, pp. 291–311. The Mineralogical Society Series, Vol. 9. [Google Scholar]
  • 99.Hodson M. E., Valsami-Jones E., Cotter-Howells J., Dubbin W. E., Kemp A. J., Thornton I., and Warren A. (2001) Effect of bonemeal (calcium phosphate) amendments on metal release from contaminated soils–a leaching column study. Environ. Pollut., 112, 233–243. [DOI] [PubMed] [Google Scholar]
  • 100.Horvath B., and Gruiz K. (1996) Impact of metalliferous ore mining activity on the environment in Gyongyosoroszi, Hungary. Sci. Total Environ., 184, 215–227. [Google Scholar]
  • 101.Huang J. W., and Cunningham S. D. (1996) Lead phytoextraction:-species variation in lead uptake and translocation. New Phytol., 134, 75–84. [Google Scholar]
  • 102.Hudson-Edwards K. A., Macklin M. G., Jamieson H. E., Brewer P. A., Coulthard T. J., Howard A. J., and Turner J. N. (2003) The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Rýos Agrio-Guadiamar, Aznalcollar, Spain. Appl. Geochem., 18, 221–239. [Google Scholar]
  • 103.Hutchinson T. C. (1979) Copper contamination of ecosystems caused by smelter activities. In: Nriagu J. O. (ed.), Copper in the Environment Part 1: Ecological Cycling, pp. 451–502. John Wiley, New York. [Google Scholar]
  • 104.Illera V., Garrido F., Serrano S., and Garcia-Gonzales M. T. (2004) Immobilization of the heavy metals Cd, Cu, and Pb in an acid soil amended with gypsum- and lime-rich industrial by-products. Eur. J. Soil Sci., 55, 135–145. [Google Scholar]
  • 105.Interdepartmental Committee on the Redevelopment of Contaminated Land (ICRCL), 1987. Guidance on the Assessment and Redevelopment of Contaminated land Guidance Note 59/83, Department of the Environment, London.
  • 106.Interstate Technology and Regulatory Cooperation Work Group (ITRC) (1999) Phytoremediation Decision Tree The Environmental Council of the States, Washington DC. Available online at: www.itrc-web.org/Documents/PHYTO-l.pdf Accessed May 2006. [Google Scholar]
  • 107.Iskandar I. K., and Adriano D. C. (1997) Remediation of Soils Contaminated with Metals. Science Reviews, Northwood. [Google Scholar]
  • 108.Jiang L. Y., Yang X. E., and He Z. L. (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere, 55, 1179–1187. [DOI] [PubMed] [Google Scholar]
  • 109.Johnson M. S., Cooke J. A., and Stevenson J. K. W. (1994) Revegetation of metalliferous wastes and land after metal mining. In: Hester R. E., and Harrison R. M. (eds.), Mining and Its Environmental Impact, pp. 31–48. The Royal Society of Chemistry, Cambridge. [Google Scholar]
  • 110.Jones C. A., Inskeep W. P., and Neuman D. R. (1997) Arsenic transport in contaminated mine tailings following liming. J. Environ. Qual., 26(2), 433–439. [Google Scholar]
  • 111.Kabata-Pendias A. (2004) Soil-plant transfer of trace elements–an environmental issue. Geoderma, 122, 143–149. [Google Scholar]
  • 112.Kabata-Pendias A., and Pendias H. (2001) Trace Elelements in Soil and Plants. CRC Press, Boca Raton, Florida. [Google Scholar]
  • 113.Karczewska A. (1996) Metal species distribution in top- and sub-soil in an area affected by copper smelter emissions. Appl. Geochem., 11(1-2), 35–42. [Google Scholar]
  • 114.Kavanagh P. J. (1998) Impacts of High Arsenic Concentrations in South West England on Human Health and Agriculture. PhD thesis, University of London. [Google Scholar]
  • 115.Kavanagh P. J., Farago M. E., Thornton I., and Braman R. S. (1997) Bioavailability of arsenic in soils and mine wastes of the Tamar valley, SW England. Chem. Spec. Bioavailab., 9(3), 77–81. [Google Scholar]
  • 116.Kelley B. B., and Tuovinen O. H. (1988) Microbiological oxidations of minerals in mine tailings. In: Salomons W., and Forstner U. (eds.), Chemistry and Biology of Solid Waste, pp. 33–64. Springer-Verlag, Berlin. [Google Scholar]
  • 117.Kim J. Y., Kim K. W., Ahn J. S., Ko I., and Lee C. H. (2005) Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environ. Geochem. Hlth., 27, 193–203. [DOI] [PubMed] [Google Scholar]
  • 118.Koo B. J. (2001) Assessing Bioavailability of Metals in Biosolid-treated Soils; Root Exudates and Their Effects on Solubility of Metals PhD thesis, University of California, Riverside. [Google Scholar]
  • 119.Kramer U. (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr. Opin. Biotechnol., 16(2), 133–141. [DOI] [PubMed] [Google Scholar]
  • 120.Kraus U., and Wiegand J. (2006) Long-term effects of the Aznalcóllar mine spill–heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Sci. Total Environ., 367, 855–871. [DOI] [PubMed] [Google Scholar]
  • 121.Krause E., and Ettel V. A. (1989) Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy, 22, 311–337. [Google Scholar]
  • 122.Kukier U., and Chaney R. L. (2001) Amelioration of Ni phytotoxicity in muck and mineral soils. J. Environ. Qual., 30, 1949–1960. [DOI] [PubMed] [Google Scholar]
  • 123.Laperche V., Traina S. J., Gaddam P., and Logan T. J. (1996) Chemical and mineralogical characterisation in a contaminated soil: reactions with synthetic apatite. Environ. Sci. Technol., 30, 3321–3326. [Google Scholar]
  • 124.Laperche V., Logan T. J., Gaddam P., and Traina S. J. (1997) Effect of apatite amendments on plant uptake of lead from contaminated soil. Environ. Sci. Technol., 31, 2745–2753. [Google Scholar]
  • 125.Lasat M. M. (2000) Phytoextraction of metals from contaminated soil. A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard. Substance Res., 2, 5–1 to 5–25. [Google Scholar]
  • 126.Lasat M. M. (2002) Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual., 31(1), 109–120. [PubMed] [Google Scholar]
  • 127.Lee J., and Nriagu J. (2003) The formation of mineral arsenates in wastewaters. J. Phys. IV, 107, 753–756. [Google Scholar]
  • 128.Lee J. S. (2002) Metal Arsenates in the Environment PhD Thesis, University of Michigan. [Google Scholar]
  • 129.Lee J. Y., Choi J. C., Yi M. J., Kim J. W., Cheon J. Y., Choi Y. K., Choi M. J., and Lee K. K. (2005) Potential of groundwater contamination with toxic metals in and around an abondoned Zn mine, Korea. Water Air Soil Pollut., 165, 167–185. [Google Scholar]
  • 130.Lenoble V., Lacrautre C., Deluchat V., Sepraud B., and Bollinger J. C. (2004) Arsenic Removal by Adsorption on Iron(III) Phosphate, University of Limoges, Limoges, France. Unpublished data. [DOI] [PubMed] [Google Scholar]
  • 131.Li X. (1993) The Multielement Associations in some Old Mining Areas, England. PhD thesis, University of London. [Google Scholar]
  • 132.Li X., and Thornton I. (1993) Multielement contamination of soils and plants in the old mining areas, UK. Appl. Geochem. (Suppl. No. 2), 51–56. [Google Scholar]
  • 133.Li Y. M., Chaney R. L., Siebielec G., and Kershner B. A. (2000) Response of four turfgrass cultivars to limestone and biosolids compost amendment of a zinc and cadmium contaminated soil at Palmerton, PA. J. Environ. Qual., 29, 1440–1447. [Google Scholar]
  • 134.Lombi E., Zhao F., Zhang G., Suna B., Fitz W., Zhang H., and McGrath S. P. (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ. Pollut., 118, 435–443. [DOI] [PubMed] [Google Scholar]
  • 135.Lombi E., Hamon R. E., McGrath S. P., and McLaughlin M. J. (2003) Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environ. Sci. Technol., 37, 979–984. [DOI] [PubMed] [Google Scholar]
  • 136.Lombi E., Hamon R. E., Wieshammer G., McLaughlin M. K., and McGrath S. P. (2004) Assessment of the use of industrial by-products to remediate a copper and arsenic contaminated soil. J. Environ. Qual., 33, 902–910. [DOI] [PubMed] [Google Scholar]
  • 137.Lytle C. M., Lytle F. W., Yang N., Qian J. H., Hansen D., Zayed A., and Terry N. (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ. Sci. Technol., 32, 3087–3093. [Google Scholar]
  • 138.Ma L. Q., Traina S. J., and Logan T. J. (1993) In situ lead immobilization by apatite. Environ. Sci. Technol., 27, 1803–1810. [Google Scholar]
  • 139.Ma L. Q., Logan T. J., and Traina S. J. (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ. Sci. Technol., 29, 1118–1126. [DOI] [PubMed] [Google Scholar]
  • 140.Ma L. Q., and Rao G. N. (1999) Aqueous Pb reduction in Pb-contaminated soils by Florida phosphate rocks. Water Air Soil Pollut., 110, 1–16. [Google Scholar]
  • 141.Ma L. Q., Komar K. M., Tu C., Zhang W., Cai Y., and Kennelley E. D. (2001) A fern that hyperaccumulates arsenic. Nature, 409–579. [DOI] [PubMed] [Google Scholar]
  • 142.Magalhaes M. C. F. (2002) Arsenic. An environmental problem limited by solubility. Pure Appl. Chem., 74(10), 1843–1850. [Google Scholar]
  • 143.Magalhaes M. C. F., and Silva M. C. M. (2003) Stability of Lead(II) Arsenates. Chem. Mon., 134, 735–743. [Google Scholar]
  • 144.Martin T. A., and Ruby M. V. (2003) In situ remediation of arsenic in contaminated soils. Remediat. J., 14(1), 21–32. [Google Scholar]
  • 145.Martin T. A., and Ruby M. V. (2004) Review of in situ remediation technologies for lead, zinc and cadmium contaminated soils. Remediat. J., 14(3), 35–53. [Google Scholar]
  • 146.Martinez C. E., Jacobson A., and McBride M. B. (2001) Thermally induced changes in metal solubility of contaminated soils is linked to mineral recrystallization and organic matter transformations. Environ. Sci. Technol., 35, 908–916. [DOI] [PubMed] [Google Scholar]
  • 147.Maskall J. E., and Thornton I. (1998) Chemical partitioning of heavy metals in soils, clays and rocks at historical lead smelting sites. Water Air Soil Pollut., 108, 391–409. [Google Scholar]
  • 148.Matera V., Le Hecho L., Laboudigue, Tellier T. S., and Astruc M. (2003) A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ. Pollut., 126(1), 51–64. [DOI] [PubMed] [Google Scholar]
  • 149.McBride M. B., and Martinez C. E. (2000) Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials. Environ. Sci. Technol., 34(20), 4386. [Google Scholar]
  • 150.McGrath S. P., and Zhao F. J. (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotech., 14(3), 277–282. [DOI] [PubMed] [Google Scholar]
  • 151.McGrath S. P., Zhao F. J., and Lombi E. (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil, 232(1-2), 207–214. [Google Scholar]
  • 152.McGrath S. P., Zhao F. J., and Lombi E. (2002) Phytoremediation of metals, metalloids, and radionuclides, Adv. Agron., 75, 1–56. [Google Scholar]
  • 153.Mench M., Bussiere S., Boisson J., Castaing E., Vangronsveld J., Ruttens A., De Koe T., Bleeker P., Assunção A., and Manceau A. (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil, 249, 187–202. [Google Scholar]
  • 154.Mench M., De Koe T., Vangrosveld J., Bussiere S., Boisson J., and Masson P. (1999) Remediation of the Jales mine spoil by inactivation and phytostabilization: study in lysimeters. In: Wenzel W. W. (ed.), Proceedings of the 5th International Conference on the Biogeochemistry of Trace Elements, pp. 914–915. [Google Scholar]
  • 155.Merrington G., and Alloway B. J. (1994) The transfer and fate of Cd, Cu, Pb and Zn from two historic metalliferous mine sites in the UK. Appl. Geochem., 9, 677–687. [Google Scholar]
  • 156.Monni S., Salemma M., White C., Tuttila E., and Huopalainen M. (2000) Copper resistance of Calluna vulgaris originating from the pollution gradient of Cu-Ni smelter, in southwest Finland. Environ. Pollut., 109, 211–219. [DOI] [PubMed] [Google Scholar]
  • 157.Moore J. N., and Luoma S. N. (1990) Hazardous wastes from large scale metal extraction. Environ. Sci. Technol., 24(9), 1278–1285. [Google Scholar]
  • 158.Mulligan C. N., Yong R. N., and Gibbs B. F. (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol., 60(1-4), 193–207. [Google Scholar]
  • 159.Nascimento C. W. A., Fontes R. L. F., and Dias Melicio A. C. F. (2003) Copper availability as related to soil copper fractions in oxisoils under liming. Scientia Agricola, 60(1), 167–173. [Google Scholar]
  • 160.Navarro A., Collado D., Carbonell M., and Sanchez J. A. (2004) Impact of mining on soils in semi-arid environment: Sierra Almagrera, SE Spain. Environ. Geochem. Hlth., 26, 383–393. [DOI] [PubMed] [Google Scholar]
  • 161.Neuberger J. S., Mulhall M., Pomatto M. C., Sheverbush J., and Hassanein R. S. (1990) Health problems in Galena, Kansas: A heavy metal mining Superfund site. Sci. Total Environ., 94(3), 261–272. [DOI] [PubMed] [Google Scholar]
  • 162.Nikolaidis N. P., Dobbs G. M., and Lackovic J. A. (2003) Arsenic removal by zerovalent iron: Field, laboratory and modelling studies. Water Res., 37, 1417–1425. [DOI] [PubMed] [Google Scholar]
  • 163.Nishimura T., Itoh C. T., and Tozawa K. (1987) Stabilities and solubilities of metal arsenites and arsenates in water and effect of sulfate and carbonate ions on their solubilities. In: Reddy G. R., Hendrix L. J., and Queneau P. B. (eds.), Arsenic Metallurgy Fundamentals and Applications, pp. 77–98. The Metallurgical Society Inc., Warrendale, Pennsylvania. [Google Scholar]
  • 164.Nordstrom D. K. (1982) Aqueous pyrite oxidation and consequent formation of secondary iron minerals. In: Hossner R. R. (ed.), Acid Sulfate Weathering, pp. 37–56. Soil Science Society of America, Madison, Visconsin. [Google Scholar]
  • 165.Nowack B., Schulin R., and Robinson B. H. (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ. Sci. Technol., 40(17), 5225–5232. [DOI] [PubMed] [Google Scholar]
  • 166.Nriagu J. O. (1984) Formation and stability of base metal phosphates in soils and sediments. In: Nriagu J. O., and Moore P. B. (eds.), Phosphate Minerals, pp. 318–329. Springer-Verlag, London. [Google Scholar]
  • 167.Oste L. A., Lexmond T. M., and Van Riemsdijk W. H. (2002. a) Metal immobilization in soils using synthetic zeolites. J. Environ. Qual., 31(3), 813–821. [DOI] [PubMed] [Google Scholar]
  • 168.Paliouris G., and Hutchinson T. C. (1991) Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytologist, 117, 449–459. [DOI] [PubMed] [Google Scholar]
  • 169.Papassiopi N., Stefanakis M., and Kontopoulos A. (1987) Removal of arsenic from solution by precipitation as ferric arsenates. In: Reddy R. G., Hendrix J. L., and Queneau P. B. (eds.), Arsenic Metallurgy Fundamentals and Applications, pp. 321–334. The Metallurgical Society Inc., Warrendale, Pennsylvania. [Google Scholar]
  • 170.Petrisor I. (2004) Artificial inoculation–Perspectives in tailings phytostabilization. Int. J. Phytorem., 6(1), 1–15. [DOI] [PubMed] [Google Scholar]
  • 171.Pierzynski G. M. (1997) Strategies for remediating trace element contaminated sites. In: Iskandar I. K., and Adriano D. C. (eds.), Remediation of Soils Contaminated with Metals, pp. 67–84. Science Reviews, Northwood. [Google Scholar]
  • 172.Pierzynski G. M., Schnoor J. L., Banks M. K., Tracy J. C., Licht L. A., and Erickson L. E. (1994) Vegetative remediation at superfund sites. In: Hester R. E., and Harrison R. M. (eds.), Mining and Its Environmental Impact, pp. 49–69. The Royal Society of Chemistry, Cambridge. [Google Scholar]
  • 173.Pomilio A. B., Leicach S. R., Grass M. Y., Ghersa C. M., Santoro M., and Vitale A. A. (2000) Constituents of the root exudates of Avena fatua grown under far-infrared-enriched light. Phytochem. Analysis, 11, 304–308. [Google Scholar]
  • 174.Pope J. M., Farago M. E., Thornton I., and Cordos E. (2005) Metal enrichment in Zlatna, a Romanian copper smelting town. Water Air Soil Pollut., 162, 1–18. [Google Scholar]
  • 175.Porter E. K., and Peterson P. J. (1975) Arsenic accummulation by plants on mine waste in United Kingdom. Sci. Total Environ., 4, 365–371. [Google Scholar]
  • 176.Prasad M. N. V., and Freitas H. M. D. (2003) Metal hyperaccumulation in plants–Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol., 6(3), 285–321. [Google Scholar]
  • 177.Ramaswami A., Tawachsupa S., and Isleyen M. (2001) Batch mixed iron treatment of high arsenic waters. Water Res., 35(18), 4474–4479. [DOI] [PubMed] [Google Scholar]
  • 178.Reddy R. G., Hendrix J. L., and Queneau P. B. (1987) Arsenic Metallurgy Fundamentals and Applications. The Metallurgical Society Inc., Warrendale, Pennsylvania. [Google Scholar]
  • 179.Reeves R. D. (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil, 249(1), 57–65. [Google Scholar]
  • 180.Robins R. G. (1981) The solubility of metal arsenates. Metall. Trans. B, 12, 103–109. [Google Scholar]
  • 181.Robins R. G. (1987) Arsenic hydrometallurgy. In: Reddy R. G., Hendrix J. L., and Queneau P. B. (eds.), Arsenic Metallurgy Fundamentals and Applications, pp. 215–247. The Metallurgical Society Inc., Warrendale, Pennsylvania. [Google Scholar]
  • 182.Robins R. G. (2001) Some chemical aspects relating to arsenic remedial technologies, Proceedings of the US EPA Workshop on Managing Arsenic Risks to the EnvironmentAvailable online at: http://www.epa.gov/ttbnrmrl/ArsenicPres/78.pdf Accessed April 2006, 1–3 May 2001, Denver CO.
  • 183.Robinson B., Green S., Mills T., Clothier B., van der Velde M., Laplane R., Fung L., Deurer M., Hurst S., Thayalakumaran T., and van den Dijssel C. (2003) Phytoremediation: using plants as biopumps to improve degraded environments. Aust. J. Soil Res., 41(3), 599–611. [Google Scholar]
  • 184.Rochette E. A., Li G. C., and Fendorf S. E. (1998) Stability of arsenate minerals in soil under biotically generated reducing conditions. Soil Sci. Soc. Am. J., 62, 1530–1537. [Google Scholar]
  • 185.Romheld V., and Marschner H. (1986) Mobilization of iron in the rhizosphere of different plant species. Adv. Plant Nutr., 2, 155–204. [Google Scholar]
  • 186.Romkens P. F., and Salomons W. (1998) Cd, Cu and Zn solubility in arable and forest soils: consequences of land use changes for metal mobility and risk assessment. Soil Sci., 163, 859–871. [Google Scholar]
  • 187.Romkens P. F., Bouwman L. A., and Boon G. T. (1999) Effect of plant growth on copper solubility and speciation in soil solution samples. Envron. Pollut., 106, 315–321. [DOI] [PubMed] [Google Scholar]
  • 188.Salomons W. (1995) Environmental impact of metals derived from mining activities: Processes, predictions, prevention. J. Geochem. Explor., 52, 5–23. [Google Scholar]
  • 189.Sas-Nowosielska A., Kucharski R., Malkowski E., Pogrzeba M., Kuperberg J. M., and Krynski K. (2004) Phytoextraction crop disposal–an unsolved problem. Environ. Pollut., 128, 373–379. [DOI] [PubMed] [Google Scholar]
  • 190.Schnoor J. L. (1997) Phytoremediation Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center (GWRTAC), GWRTAC E-series TE-98–01, Pittsburgh, PA.
  • 191.Schwitzguébel J.-P. (2002) Hype or Hope: The potential of phytoremediation as an emerging green technology. Federal Facilities Environmental Journal. Spring, 109–125. [Google Scholar]
  • 192.Sharpies J. M., Meharg A. A., Chambers S. M., and Cairney J. W. G. (2000. a) Arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytologist, 151, 265–270. [DOI] [PubMed] [Google Scholar]
  • 193.Sharpies J. M., Meharg A. A., Chambers S. M., and Cairney W. G. (2000. b) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol., 124, 1327–1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Shevade S., and Ford R. G. (2004) Use of synthetic zeolites for arsenate removal from pollutant water. Water Res., 38, 3197–3204. [DOI] [PubMed] [Google Scholar]
  • 195.Silveira M. L. A., Alleoni L. R. F., and Guilherme L. R. G. (2003) Biosolids and heavy metals in soils. Scientia Agricola, 60(4), 793–806. [Google Scholar]
  • 196.Simon L. (2005) Stabilisation of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environ. Geochem. Health, 27, 289–300. [DOI] [PubMed] [Google Scholar]
  • 197.Sims R., Sorenson D., Sims J., McLean J., Mahmood R., Dupont R., Jurinak J., and Wagner K. (1986) Contaminated Surface Soils In-Place Treatment Techniques. Noyes Publications, Park Ridge, NJ. [Google Scholar]
  • 198.Smith R. A. H., and Bradshaw A. D. (1979) The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J. Appl. Ecol., 16, 595–612. [Google Scholar]
  • 199.Soprovich E. A. (2000) Arsenic release from oxide tailings containing scorodite, Fe-Ca arsenates and As containing geothites. Tailings and Mine Waste 2000, pp. 277–287. Balkema, Rotterdam. [Google Scholar]
  • 200.Sorensen M. A., Stackpoole M. M., Frenkel A. I., Bordia R. K., Korshin G. V., and Christensen T. H. (2000) Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding. Environ. Sci. Techno., 34, 3991–4000. [Google Scholar]
  • 201.Srivastava M., Ma L. Q., and Gonzaga Santos J. A. (2006) Three new arsenic hyperaccumulating ferns. Sci. Total Environ., 364, 24–31. [DOI] [PubMed] [Google Scholar]
  • 202.Strobel B. W., Borggaard O. K., Hansen H. C. B., Andersen M. K., and Raulund-Rasmussen K. (2005) Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. Eur. J. Soil Sci., 56, 189–196. [Google Scholar]
  • 203.Su C., and Puls R. W. (2001) Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation and implications for in situ groundwater remediation. Environ. Sci.Technol., 35, 1487–1492. [DOI] [PubMed] [Google Scholar]
  • 204.Suresh B., and Ravishankar G. A. (2004) Phytoremediation–A novel and promising approach for environmental clean-up. Crit. Rev. Biotechnol., 24(2-3), 97–124. [DOI] [PubMed] [Google Scholar]
  • 205.Swash P. M., and Monhemius A. J. (1994) Hydrothermal precipitation from aqueous solutions containing iron III arsenate and sulphate. In: Institution of Mining and Metallurgy (ed.), Hydrometallurgy'94, pp. 177–190. Chapman and Hall, London. [Google Scholar]
  • 206.Swash P. M., and Monhemius A. J. (1995) Synthesis, characterization and solubility testing of solids in the Ca-Fe-AsO4 system. In: Hynes T. P., and Blanchette M. C. (eds.), Proceedings Mining and the Environment, pp. 17–28. Canada Communication Group, Sudbury, 28 May–1 June 1995, Ottawa, Canada. [Google Scholar]
  • 207.Terzano R., Spagnuolo M., Medici L., Tateo F., and Ruggiero P. (2005) Zeolite synthesis from pre-treated coal fly ash in presence of soil as a tool for soil remediation. Appl. Clay Sci., 29(2), 99–110. [Google Scholar]
  • 208.Tessier A., Campbell P. G. C., and Bisson M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 51(7), 844–851. [Google Scholar]
  • 209.Thornton I. (1995) Metals in the Global Environment: Facts and Misconceptions. The International Council on Metals in the Environment, Canada. [Google Scholar]
  • 210.Thornton I. (1996) Impacts of mining on the environment; some local, regional and global issues. App. Geochem., 11, 335–361. [Google Scholar]
  • 211.Trafas M. (1996) Changes in the properties of post-flotation wastes due to vegetation introduced during process of reclamation. Appl. Geochem., 11, 181–185. [Google Scholar]
  • 212.Tristan E., Demetriades A., Ramsey M. H., Rosenbaum M. S., Stavrakis P., Thornton I., Vassiliades E., and Vergou K. (2000) Spatially resolved hazard and exposure assessments: An example of lead in soil at Lavrion, Greece. Environ. Res. Sect. A, 82, 33–45. [DOI] [PubMed] [Google Scholar]
  • 213.Tu C., Ma L. Q., and Bondada B. (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilisation potential for phytoremediatoin. J. Environ. Qual., 28, 1719–1726. [DOI] [PubMed] [Google Scholar]
  • 214.Twidwell L. G., McCloskey J., Miranda P., and Gale M. (1999) Technologies and potential technologies for removing arsenic from process and minewaste water. In: Gaballah L., Hager J., and Solozabal R. (eds.), Proceedings Global Symposium on Recycling, Waste Treatment and Clean Technology, pp. 1715–1726. TMS, Warrendale, PA, USA. [Google Scholar]
  • 215.Twidwell L. G., Plessas K. O., Comba P. G., and Dahnke D. R. (1994) Removal of arsenic from wastewaters and stabilization of arsenic bearing waste solids: summary of experimental studies. J. Hazard Mater., 36, 69–80. [Google Scholar]
  • 216.United Nations Environment Programme (UNEP) (2001) Abandoned Mines: Problems, Issues and Policy Challenges for Decision Makers: Summary Report on the first Pan-American Worksop on Abandoned Mines, held in Santiago, Chile 18th June 2001. Available online at: www.mineralresourcesforum.org Accessed February 2006.
  • 217.Valsami-Jones E., Ragnarsdottir K. V., Putnis A., Bosbach D., Kemp A. J., and Cressey G. (1998) The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chem Geol., 151, 215–233. [Google Scholar]
  • 218.Van der Sloot H. A. (2002) Harmonisation of leaching/extraction procedures for sludge, compost, soil and sediment analyses. In: Quevauviller P. (ed.), Methodologies for Soil and Sediment Fractionation Studies, pp. 142–174. The Royal Society of Chemistry. [Google Scholar]
  • 219.Vandecasteele C., Dutre V., Geysen D., and Wauters G. (2002) Solidification/stabilization of arsenic bearing fly ash from the metallurgical industry. Immobilization mechanism of arsenic. Waste Manag., 22, 143–146. [DOI] [PubMed] [Google Scholar]
  • 220.Vangrosveld J., Van Assche F., and Clijsters H. (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ. Pollut., 87, 51–59. [DOI] [PubMed] [Google Scholar]
  • 221.Vangrosveld J., and Cunningham S. (1998) Metal Contaminated Soils. In Situ Inactivation and Phytorestoration. TX Springer Verlag and R.G. Landes Company, Georgetown. [Google Scholar]
  • 222.Verner J. F., Ramsey M. H., Helios-Rybicka E., and Jedrzejczyk B. (1996) Heavy metal contamination of soils around a Pb-Zn smelter in Bukowno, Poland. Appl. Geochem., 11, 11–16. [Google Scholar]
  • 223.Vic E. A., Bardos P., Brogan J., Edwards D., Gondi F., Henrysson T., Jensen B. K., Jorge C., Mariotti C., Nathanail P., and Papassiopi N. (2001) Towards a framework for selecting remediation technologies for contaminated sites. Land Contain. Recl., 9(1), 119–127. [Google Scholar]
  • 224.Vissottiviseth P., Francesconi K., and Sridokchan W. (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ. Pollut., 118, 453–461. [DOI] [PubMed] [Google Scholar]
  • 225.Voigt D. E., Brantley S. L., and Hennet R. J.-C. (1996) Chemical fixation of arsenic in contaminated soils. Appl. Geochem., 11, 633–643. [Google Scholar]
  • 226.Vu K. B., Kaminski M. D., and Nunez L. (2003) Review of Arsenic Removal Technologies for Contaminated Groundwaters Argonne National Laboratory, Argonne, Illinois, The University of Chicago. Available online at http://www.ipd.anl.gov/anlpubs/2003/05/46522.pdf Accessed December 2005. [Google Scholar]
  • 227.Walker D. J., Clemente R., Roig A., and Bernai M. P. (2003) The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ. Pollut., 122, 303–312. [DOI] [PubMed] [Google Scholar]
  • 228.Warren G. P., Alloway B. J., Lepp N. W., Singh B., Bochereau A. J. M., and Penny C. (2003) Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci. Total Environ., 311(1-3), 19–33. [DOI] [PubMed] [Google Scholar]
  • 229.Waychunas G. A., Rea B. A., Fuller C. C., and Davis J. A. (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of geometry of coprecipitated and adsorbed arsenates. Geochim. Cosmochim. Acta, 57, 2251–2269. [Google Scholar]
  • 230.Welham N. J., Malatt K. A., and Vukcevic S. (2000) The stability of iron phases presently used for disposal from metallurgical systems–a review. Miner. Eng., 13(8-9), 911–931. [Google Scholar]
  • 231.Whiting S. N., Reeves R. D., Richards D., Johnson M. S., Cooke J. A., Malaisse F., Paton A., Smith J. A. C., Angle J. S., Chaney R. L., Ginocchio R., Jaffre T., Johns R., McIntyre T., Purvis O. W., Salt D. E., Schat H., Zhao F. J., and Baker A. J. M. (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restorat. Ecol., 12(1), 106–116. [Google Scholar]
  • 232.Woolson E. A., Axley J. H., and Kearney P. C. (1973) The chemistry and phytotoxicity of arsenic in soils. Effects of time and phosphorus. Soil Sci. Soc. Am. J. Proc, 37, 254–259. [Google Scholar]
  • 233.Wright J., and Conca J. L. (2005) Geochemistry of anthropogenic lead stabilization by Apatite II (TM). Geochim. Cosmochim. Acta, 69(10), A64–A64. [Google Scholar]
  • 234.Xu Y., and Schwartz F. W. (1994) Lead immobilization by hydroxyapatite in aqueous solution. J. Contam. Hydrol., 15, 187–206. [Google Scholar]
  • 235.Zhang P., and Ryan J. A. (1998) Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying pH conditions. Environ. Sci. Technol., 32, 3318–3324. [Google Scholar]
  • 236.Zhao F., Dunham S. J., and McGrath S. P. (2002) Arsenic hyperaccumulation by different fern species. New Phytol., 156, 27–31. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES