Abstract
The luminescence of trivalent lanthanide ions has found applications in lighting, lasers, optical telecommunications, medical diagnostics, and various other fields. This introductory review presents the basics of organic and inorganic luminescent materials containing lanthanide ions, their applications, and some recent developments. After a brief history of the discovery, purification and early spectroscopic studies of the lanthanides, the radiative and nonradiative transitions of the 4f electrons in lanthanide ions are discussed. Lanthanide-doped phosphors, glasses and crystals as well as luminescent lanthanide complexes with organic ligands receive attention with respect to their preparation and their applications. Finally, two recent developments in the field of luminescent materials are addressed: near-infrared luminescent lanthanide complexes and lanthanide-doped nanoparticles.
Keywords: lanthanide, luminescence, nanoparticles, photonics
Full Text
The Full Text of this article is available as a PDF (515.5 KB).
References
- 1.Hemmilä I. (1995) Luminescent lanthanide chelates–a way to more sensitive diagnostic methods. J. Alloys Compd., 225, 480–485. [Google Scholar]
- 2.Parker D., and Williams J. A. G. (1996) Getting excited about lanthanide complexation chemistry. J. Chem. Soc. Dalton Trans., 3613–3628. [Google Scholar]
- 3.Görrler-Walrand C., and Binnemans K. (1998) Spectral Intensities of f-f Transitions. Handbook on the Physics and Chemistry of Rare Earths, Vol. 25, Chap. 167, pp. 101–264. Elsevier, Amsterdam. [Google Scholar]
- 4.Jüstel T., Nikol H., and Ronda C. (1998) New developments in the field of luminescent materials for lighting and displays. Angew. Chem. Int. Ed., 37, 3084–3103. [DOI] [PubMed] [Google Scholar]
- 5.Adam J.-L. (2002) Lanthanides in non-oxide glasses. Chem. Rev., 102, 2461–2476. [DOI] [PubMed] [Google Scholar]
- 6.Kido J., and Okamoto Y. (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev., 102, 2357–2368. [DOI] [PubMed] [Google Scholar]
- 7.Kaminskii A. A. (2003) Modern developments in the physics of crystalline laser materials. Phys. Stat. Sol. A, 200, 215–296. [Google Scholar]
- 8.Rocha J., and Carlos L. D. (2003) Microporous materials containing lanthanide metals. Curr. Opin. Solid State Mater. Sci., 7, 199–205. [Google Scholar]
- 9.Auzel F. (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev., 104, 139–173. [DOI] [PubMed] [Google Scholar]
- 10.Wybourne B. G. (2004) The fascination of the rare earths–then, now and in the future. J. Alloys. Compd., 380, 96–100. [Google Scholar]
- 11.Parker D. (2004) Excitement in f block: structure dynamics and function of nine-coordinate chiral lanthanide complexes in aqueous media. Chem. Soc. Rev., 33, 156–165. [DOI] [PubMed] [Google Scholar]
- 12.Hasegawa Y., Wada Y., and Yanagida S. (2004) Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. J. Photochem. Photobiol. C, 5, 183–202. [Google Scholar]
- 13.Polman A., and Van Veggel F. C. J. M. (2004) Broadband sensitizers for erbium-doped planar optical amplifiers: a review. J. Opt. Soc. Am. B, 21, 871–892. [Google Scholar]
- 14.Dossing A. (2005) Luminescence from lanthanide(3+) ions in solution. Eur. J. Inorg. Chem., 1425–1434. [Google Scholar]
- 15.Werts M. H. V., Jukes R. T. F., and Verhoeven J. W. (2002) The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys., 4, 1542–1548. [Google Scholar]
- 16.Danielson E., Golden J. H., McFarland E. W., Reaves C. M., Weinberg W. H., and Wu X. D. (1997) A combinatorial approach to the discovery and optimization of luminescent materials. Nature, 389, 944–948. [Google Scholar]
- 17.Desurvire E. (1994) The golden age of optical fiber amplifiers. Phys. Today, January issue, 20–27. [Google Scholar]
- 18.Koeppen C., Yamada S., Jiang G., and Garito A. F. (1997) Rare-earth organic complexes for amplification in polymer optical fibers and waveguides. J. Opt. Soc. Am. B, 14, 155–162. [Google Scholar]
- 19.Baldo M. A., Thompson M. E., and Forrest S. R. (1999) Phosphorescent materials for application to organic light emitting devices. Pure Appl. Chem., 71, 2095–2106. [Google Scholar]
- 20.Moynagh J., and Schimmel H. (1999) Tests for BSE evaluated. Nature, 400, 105. [DOI] [PubMed] [Google Scholar]
- 21.McCoy H. N. (1935) The separation of europium from other rare earths. J. Am. Chem. Soc., 57, 1756. [Google Scholar]
- 22.Becquerel J. (1906) Sur les variations des bandes d'absorption d'un crystal dans un champ magnétique. Compt. Rend. Hebd. Acad. Sci., 142, 775–779. [Google Scholar]
- 23.Bethe H. (1930) Zur Theorie des Zeemaneffektes an den Salzen der seltenen Erden. Z. Physik, 60, 218. [Google Scholar]
- 24.Van Vleck J. H. (1937) The puzzle of rare-earth spectra in solids. J. Chem. Phys., 41, 67–80. [Google Scholar]
- 25.Freed S., Weissman S. I., Fortress F. E., and Jacobson H. F. (1939) Ions of europium distributed between different configurations in homogeneous solutions. J. Chem. Phys., 7, 824–828. [Google Scholar]
- 26.Weissman S. I. (1942) Intramolecular energy transfer. The fluorescence of complexes of europium. J. Chem. Phys., 10, 214–217. [Google Scholar]
- 27.Yuster P., and Weissman S. I. (1949) Effects of perturbations on phosphorescence: luminescence of metal organic complexes. J. Chem. Phys., 17, 1182–1188. [Google Scholar]
- 28.Carnall W. T., Goodman G. L., Rajnak K., and Rana R. S. (1989) A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys., 90, 3443–3457. [Google Scholar]
- 29.Peijzel P. S., Meijerink A., Wegh R. T., Reid M. F., and Burdick G. W. (2005) A complete 4P energy level diagram for all trivalent lanthanide ions. J. Solid State Chem., 178, 448–453. [Google Scholar]
- 30.Crosby G. A., and Kasha M. (1958) Intramolecular energy transfer in ytterbium organic chelates. Spectrochim. Acta, 10, 377–382. [Google Scholar]
- 31.Crosby G. A., Whan R. E., and Alire R. M. (1961) Intramolecular energy transfer in rare earth chelates. Role of the triplet state. J. Chem. Phys., 34, 743–748. [Google Scholar]
- 32.Melby L. R., Rose N. J., Abramson E., and Caris J. C. (1964) Synthesis and fluorescence of some trivalent lanthanide complexes. J. Am. Chem. Soc., 86, 5117–5125. [Google Scholar]
- 33.Bauer H., Blanc J., and Ross D. L. (1964) Octacoordinate chelates of lanthanides. Two series of compounds. J. Am. Chem. Soc., 86, 5125–5131. [Google Scholar]
- 34.El-Sayed M. A., and Bhaumik M. L. (1963) Inter-intra-(intera) molecular energy transfer to rare-earth ions in chelates. J. Chem. Phys., 39, 2391–2393. [Google Scholar]
- 35.Bhaumik M. L. (1964) Quenching and temperature dependence of fluorescence in rare-earth chelates. J. Chem. Phys., 40, 3711–3715. [Google Scholar]
- 36.Filipescu N., Kagan M. R., McAvoy N., and Serafm F. A. (1962) Fluorescent properties of rare earth chelates in vinylic hosts. Nature, 196, 467–468. [Google Scholar]
- 37.Huffman E. H. (1963) Stimulated optical emission of a terbium ion chelate in a vinylic resin matrix. Nature, 200, 158–159. [Google Scholar]
- 38.Heller A. (1967) Fluorescence and room-temperature laser action of trivalent neodymium in an organic liquid solution. J. Am. Chem. Soc., 89, 167–168. [Google Scholar]
- 39.Görller-Walrand C., and Binnemans K. (1996) Rationalization of crystal-field parametrization. Handbook on the Physics and Chemistry of Rare Earths, Vol. 23, Chap. 155, pp. 121–283. Elsevier, Amsterdam. [Google Scholar]
- 40.Weber M. J., Varitimos T. E., and Matsinger B. H. (1973) Optical intensities of rare-earth ions in yttrium orthoaluminate. Phys. Rev. B, 8, 47–53. [Google Scholar]
- 41.Wegh R. T., Donker H., Oskam K. D., and Meijerink A. (1999) Visible quantum cutting in LiGdF4: Eu3+ through downconversion. Science, 283, 663–666. [DOI] [PubMed] [Google Scholar]
- 42.Weber M. J. (1973) Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate. Phys. Rev. B, 8, 54–64. [Google Scholar]
- 43.Haas Y., and Stein G. (1972) Radiative and nonradiative pathways in solution: excited states of the europium(III) ion. J. Phys. Chem., 76, 1093–1104. [Google Scholar]
- 44.Li M., and Selvin P. R. (1995) Luminescent polyaminocarboxylate chelates of terbium and europium: the effect of chelate structure. J. Am. Chem. Soc., 117, 8132–8138. [Google Scholar]
- 45.Werts M. H. V., Hofstraat J. W., Geurts F. A. J., and Verhoeven J. W. (1997) Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates. Chem. Phys. Lett., 276, 196–201. [Google Scholar]
- 46.Horrocks W. D. Jr., and Sudnick D. R. (1981) Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc. Chem. Res., 14, 384–392. [Google Scholar]
- 47.Beeby A., Clarkson I. M., Dickins R. S., Faulkner S., Parker D., Royle L., Sousa A. S., Williams J. A. G., and Woods M. (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J. Chem. Soc, Perkin Trans., 2, 493–503. [Google Scholar]
- 48.Ekambaram S., Patil K. C., and Maaza M. (2005) Synthesis of lamp phosphors: facile combustion approach. J. Alloys Compd., 393, 81–92. [Google Scholar]
- 49.Werts M. H. V. (2000) Luminescent lanthanide complexes. Visible light sensitised red and near-infrared luminescence. Doctoral Thesis, University of Amsterdam. [Google Scholar]
- 50.Hebbink G. A., Klink S. I., Grave L., Oude Alink P. G. B., and Van Veggel F. C. J. M. (2002) Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes. Chem. Phys. Chem., 3, 1014–1018. [DOI] [PubMed] [Google Scholar]
- 51.Werts M. H. V., Duin M. A., Hofstraat J. W., and Verhoeven J. W. (1999) Bathochromicity of Michler's ketone upon coordination with lanthanide(III) beta-diketonates enables efficient sensitisation of Eu3+ for luminescence under visible light excitation. Chem. Commun., 799–800. [Google Scholar]
- 52.Rosen D. L., Sharpless C., and McGown L. B. (1997) Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence. Anal. Chem., 69, 1082–1085. [Google Scholar]
- 53.van der Tol E. B., van Ramesdonk H. J., Verhoeven J. W., Steemers F. J., Kerver E. G., Verboom W., and Reinhoudt D. N. (1998) Tetraazatriphenylenes as extremely efficient antenna chromophores for luminescent lanthanide ions. Chem. Eur. J., 4, 2315–2323. [Google Scholar]
- 54.Steemers F. J., Verboom W., Reinhoudt D. N., van der Tol E. B., and Verhoeven J. W. (1995) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J. Am. Chem. Soc., 117, 9408–9414. [Google Scholar]
- 55.Bazin H., Préaudat M., Trinquet E., and Mathis G. (2001) Homogeneous time-resolved fluorescence resonance energy transfer using rare earth cryptates as a tool for probing molecular interactions in biology. Spectrochimica Acta A, 57, 2197–2211. [DOI] [PubMed] [Google Scholar]
- 56.Selvin P. R. (2000) The renaissance of fluorescence resonance energy transfer. Nature Struct. Biol., 1, 730–734. [DOI] [PubMed] [Google Scholar]
- 57.Bailey M. P., Rocks B. F., and Riley C. (1984) Terbium chelate for use as a label in fluorescent immunoassays. Analyst, 109, 1449–1450. [DOI] [PubMed] [Google Scholar]
- 58.Poole R. A., Bobba G., Cann M. J., Frias J.-C., Parker D., and Peacock R. D. (2005) Synthesis and characterisation of highly emissive and kinetically stable lanthanide complexes suitable for usage ‘in cellulo’. Org. Biomol. Chem., 3, 1013–1024. [DOI] [PubMed] [Google Scholar]
- 59.Parker D., Senanayake K., and Williams J. A. G. (1998) Luminescent sensors for pH, pO2, halide and hydroxide ions using phenanthridine as a photosensitiser in macrocyclic europium and terbium complexes. J. Chem. Soc. Perkin Trans., 2, 2129–2139. [Google Scholar]
- 60.Lakowicz J. R., Piszczek G., Maliwal B. P., and Gryczynski I. (2001) Multiphoton excitation of lanthanides. Chem. Phys. Chem., 4, 247–252. [DOI] [PubMed] [Google Scholar]
- 61.White G. F., Litvinenko K. L., Meech S. R., Andrews D. L., and Thomson A. J. (2004) Multiphoton-excited luminescence of a lanthanide ion in a protein complex: Tb3+ bound to transferrin. Photochem. Photobiol. Sci., 3, 47–55. [DOI] [PubMed] [Google Scholar]
- 62.Fu L. M., Wen X. F., Ai X. C., Sun Y., Wu Y. S., Zhang J. P., and Wang Y. (2005) Efficient two-photon-sensitized luminescence of a europium(III) complex. Angew. Chem. Int. Ed., 44, 747–750. [DOI] [PubMed] [Google Scholar]
- 63.Werts M. H. V., Nerambourg N., Pélégry D., Le Grand Y., and Blanchard-Desce M. (2005) Action cross sections of two-photon excited luminescence of some Eu(III) and Tb(III) complexes. Photochem. Photobiol. Sci., 4, 531–538. [DOI] [PubMed] [Google Scholar]
- 64.Gouterman M., Schumaker C. D., Srivastava T. S., and Yonetani T. (1976) Absorption and luminescence of yttrium and lanthanide octaethylporphine complexes. Chem. Phys. Lett., 40, 456–461. [Google Scholar]
- 65.Gaiduk M. I., Grigoryants V. V., Mironov A. F., Rumyantseva V. D., Chissov V. I., and Sukhin G. M. (1990) Fibre-laser IR luminescence diagnostics of malignant tumours using rare earth porphyrins. J. Photochem. Photobiol. B, 7, 15–20. [DOI] [PubMed] [Google Scholar]
- 66.Rusakova N. V., and Meshkova S. B. (1990) Selective luminescence determination of neodymium in complexes with colored reagents. Zh. Anal. Khim., 45, 1914–1921. [Google Scholar]
- 67.Rusakova N. V., Meshkova S. B., Venchikov V. Y., Pyatosin V. E., and Tsvirko M. P. (1992) Quantum yield and luminescence lifetime of β-diketone complexes with neodymium as a function of ligand properties. J. Appl. Spectrosc, 56, 488–490. [Google Scholar]
- 68.Hasegawa Y., Murakoshi K., Wada Y., Yanagida S., Kim J.-H., Nakashima N., and Yamanaka T. (1996) Enhancement of luminescence of Nd3+ complexes with deuterated hexafluoroacetylacetonato ligands in organic solvent. Chem. Phys. Lett., 248, 8–12. [Google Scholar]
- 69.Beeby A., and Faulkner S. (1997) Luminescence from neodymium(III) in solution. Chem. Phys. Lett., 266, 116–122. [Google Scholar]
- 70.Beeby A., Dickins R. S., Faulkner S., Parker D., and Williams J. A. G. (1997) Luminescence from ytterbium(III) and its complexes in solution. Chem. Commun., 1401–1402. [Google Scholar]
- 71.Ding X., Alford J. M., and Wright J. C. (1997) Lanthanide fluorescence from Er3+ in Er2@C82. Chem. Phys. Lett., 269, 72–78. [Google Scholar]
- 72.Klink S. I., Keizer H., and Van Veggel F. C. J. M. (2000) Transition metal complexes as photosensitizers for near-infared lanthanide luminescence. Angew. Chem. Int. Ed., 39, 4319–4321. [DOI] [PubMed] [Google Scholar]
- 73.Werts M. H. V., Verhoeven J. W., and Hofstraat J. W. (2000) Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes. J. Chem. Soc, Perkin Trans., 2, 433–439. [Google Scholar]
- 74.Hasegawa Y., Ohkubo T., Sogabe K., Kawamura Y., Wada Y., Nakashima N., and Yanagida S. (2000) Luminescence of novel neodymium sulfonylaminate complexes in organic media. Angew. Chem. Int. Ed., 39, 357–360. [PubMed] [Google Scholar]
- 75.Bassett A. P., Van Deun R., Nockemann P., Glover P. B., Kariuki B. M., Van Hecke K., Van Meervelt L., and Pikramenou Z. (2005) Long-lived near-infrared luminescent lanthanide complexes of imidodiphosphinate “shell” ligands. Inorg. Chem., 44, 6140–6142. [DOI] [PubMed] [Google Scholar]
- 76.Werts M. H. V., Woudenberg R. H., Emmerink P. G., Gassel R. v., Hofstraat J. W., and Verhoeven J. W. (2000) A near-infrared luminescent label based on YbIII and its application in a fluoroimmunoassay. Angew. Chem. Int. Ed., 39, 4542–4544. [PubMed] [Google Scholar]
- 77.Voloshin A. L., Shavaleev N. M., and Kazakov V. P. (2001) Luminescence of praseodymium(III) chelates from two excited states and its dependence on ligand triplet state energy. J. Lumin., 93, 199–204. [Google Scholar]
- 78.Zhang J., Badger P. D., Geib S. J., and Petoud S. (2005) Sensitization of near-infrared-emitting lanthanide cations in solutions by tropolonate ligands. Angew. Chem. Int. Ed., 44, 2508–2512. [DOI] [PubMed] [Google Scholar]
- 79.Beverloo H. B., Van Schadewijk A., Van Gelderen-Boelen S., and Tanke H. J. (1990) Inorganic phosphors as new luminescent labels for immuno-cytochemistry and time-resolved microscopy. Cytometry, 11, 784–792. [DOI] [PubMed] [Google Scholar]
- 80.Van de Rijke F., Zijlmans H., Li S., Vail T., Raap A. K., Niedbala R. S., and Tanke H. J. (2001) Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnol., 19, 273–276. [DOI] [PubMed] [Google Scholar]
- 81.Riwotzki K., Meyssamy H., Kornowski A., and Haase M. (2000) Liquid-phase synthesis of doped nanoparticles: colloids of luminescing LaPO4: Eu and CePO4: Tb particles with a narrow particle size distribution. J. Phys. Chem. B, 104, 2824–2828. [Google Scholar]
- 82.Stouwdam J. W., Hebbink G. A., Huskens J., and Van Veggel F. C. J. M. (2003) Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mater., 15, 4604–4616. [Google Scholar]
- 83.Heer S., Kömpe K., Güdel H.-U., and Haase M. (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater., 16, 2102–2105. [Google Scholar]
- 84.Chengelis D. A., Yingling A. M., Badger P. D., Shade C. M., and Petoud S. (2005) Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III). J. Am. Chem. Soc., 127, 16752–16753. [DOI] [PubMed] [Google Scholar]
- 85.Diamente P. R., Burke R. D., and Van Veggel F. C. J. M. (2006) Bioconjugation of Ln3+-doped LaF3 nanoparticles to avidin. Langmuir, 22, 1782–1788. [DOI] [PubMed] [Google Scholar]
- 86.Lim S. F., Riehn R., Ryu W. S., Khanarian N., Tung C.-K., Tank D., and Austin R. H. (2006) In vivo and scanning electron microscopy of upconverting nanophosphors in Caenorhabditis Elegans. Nano Lett., 6, 169–174. [DOI] [PubMed] [Google Scholar]
- 87.Edwards B. C., Buchwald M. I., and Epstein R. I. (1998) Development of the Los Alamos solid-state optical refrigerator. Rev. Sci. Instrum., 69, 2050–2055. [Google Scholar]