Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;87(1):25–50. doi: 10.3184/003685004783238580

Near-Field Optics and Spectroscopy for Molecular Nano-Imaging

Satoshi Kawata 1,3, Yasushi Inouye 2,3, Taro Ichimura 2
PMCID: PMC10361177  PMID: 15651638

Abstract

Application of near-field optical microscopy with a sharp metallic probe to Raman spectroscopy brings microanalysis of materials to their nano-identification and imaging. The local plasmon polariton excitation on the probe tip results in the localization and amplification of the optical field at the vicinity of the tip. The tip-enhanced near-field Raman spectroscopy has analyzed DNA base molecules and single-walled carbon nanotubes (SWNTs) with the nanometric spatial resolution and sufficient sensitivity. Combined with tip pressurization and nonlinear effects, the tip-enhanced near-field Raman spectroscopy gives additional spectral information or improves the spatial resolution and sensitivity. This article introduces the recent progresses on the tip-enhanced near-field Raman spectroscopy and imaging.

Keywords: near-field optics, molecular nano-imaaging

Full Text

The Full Text of this article is available as a PDF (882.4 KB).

References

  • 1.Pohl D. W., Denk W., and Lanz M. (1984) Appl. Phys. Lett., 44, 651. [Google Scholar]
  • 2.Betzig E., Trautman J. K., Harris T. D., Weiner J. S., and Kostelak R. L. (1991) Science, 251, 1468. [DOI] [PubMed] [Google Scholar]
  • 3.Betzig E., and Chichester R. J. (1993) Science, 262, 1422. [DOI] [PubMed] [Google Scholar]
  • 4.Inouye Y., and Kawata S. (1994) Opt. Lett., 19, 159. [DOI] [PubMed] [Google Scholar]
  • 5.Inouye Y., Hayazawa N., Hayashi K., Sekkat Z., and Kawata S. (1999) Proc. SPIE, 1791, 40. [Google Scholar]
  • 6.Stöckle R. M., Suh Y. D., Deckert V., and Zenobi R. (2000) Chem. Phys. Lett., 318, 131. [Google Scholar]
  • 7.Hayazawa N., Inouye Y., Sekkat Z., and Kawata S. (2000) Opt. Commun., 183, 333. [Google Scholar]
  • 8.Hayazawa N., Inouye Y., Sekkat Z., and Kawata S. (2002) J. Chem. Phys., 117, 1296. [Google Scholar]
  • 9.Hayazawa N., Yano T., Watanabe H., Inouye Y., and Kawata S. (2003) Chem. Phys. Lett., 376, 174. [Google Scholar]
  • 10.Hartschuh A., Sanchez E. J., Xie X. S., and Novotny L. (2003) Phys. Rev. Lett., 90, 95503. [DOI] [PubMed] [Google Scholar]
  • 11.Watanabe H., Ishida Y., Hayazawa N., Inouye Y., and Kawata S. (2004) Phys. Rev., B69, 155418. [Google Scholar]
  • 12.Hayazawa N., Ichimura T., Hashimoto M., Inouye Y., and Kawata S. (2004) J. Appl. Phys., 95, 2676. [DOI] [PubMed] [Google Scholar]
  • 13.Ichimura T., Hayazawa N., Hashimoto M., Inouye Y., and Kawata S. (2004) Phys. Rev. Lett., 92, 220801. [DOI] [PubMed] [Google Scholar]
  • 14.Wolf E., and Nieto-Vesperinas M. J. (1985) Opt. Soc. Am., A2, 886. [Google Scholar]
  • 15.Kawata S. (ed.) (2001) Near-Field Optics and Surface Plasmon Polaritons, Springer, Berlin. [Google Scholar]
  • 16.Kawata Y., Xu C., and Denk W. (1999) J. Appl. Phys., 85, 1294. [Google Scholar]
  • 17.Furukawa H., and Kawata S. (1998) Opt. Commun., 148, 221. [Google Scholar]
  • 18.Kottmann J. P., Martin O. J. F., Smith D. R., and Schultz S. (2001) J. Microsc., 202, 60. [DOI] [PubMed] [Google Scholar]
  • 19.Martin Y. C., Hamman H. F., and Wickramasinghe H. K. (2001) J. Appl. Phys., 89, 5774. [Google Scholar]
  • 20.Krug J. T. II, Sánchez E. J., and Xie X. S. (2002) J. Chem. Phys., 116, 10895. [Google Scholar]
  • 21.Hayazawa N., Inouye Y., and Kawata S. (1999) J. Microsc., 194, 472. [DOI] [PubMed] [Google Scholar]
  • 22.Hamman H. F., Gallagher A., and Nesbitt D. J. (2000) Appl. Phys. Lett., 76, 1953. [Google Scholar]
  • 23.Sánchez E. J., Novotony L., and Xie X. S. (1999) Phys. Rev. Lett., 82, 4014. [Google Scholar]
  • 24.Lahrech A., Bachelot R., Gleyzes P., and Boccara A.C. (1996) Opt. Lett., 21, 1315. [DOI] [PubMed] [Google Scholar]
  • 25.Knoll B., and Keilmann F. (1999) Nature, 399, 134. [Google Scholar]
  • 26.Masaki T., Goto K., Inouye Y., and Kawata S. (2004) J. Appl. Phys., 95, 334. [Google Scholar]
  • 27.Chang R. K., and Furtak T. E. (1982) Surface Enhancement Raman Scattering, Plenum, New York. [Google Scholar]
  • 28.Nie S., and Emory S. R. (1997) Science, 275, 1102. [DOI] [PubMed] [Google Scholar]
  • 29.Kneipp K., Wang Y., Kneipp H., Perelman L. T., Itzkan I., Dasari R. R., and Feld M. S. (1997) Phys. Rev. Lett., 78, 1667. [DOI] [PubMed] [Google Scholar]
  • 30.Novotny L., Sanchez E. J., and Xie X. S. (1998) Ultramicroscopy, 71, 21. [Google Scholar]
  • 31.Deng H., Bloomfield V. A., Benevides J. M., and Thomas G. J. Jr. (1999) Biopoly, 50, 656. [DOI] [PubMed] [Google Scholar]
  • 32.Jorio A., Saito R., Hafner J. H., Lieber C. M., Hunter M., McClure T., Dresselhaus G., and Dresselhaus M. S. Phys. Rev. Lett., 86, 1118 (2001) [DOI] [PubMed] [Google Scholar]
  • 33.Duesberg G. S., Loa I., Burghard M., Syassen K., and Roth S. (2000) Phys. Rev. Lett., 85, 5436. [DOI] [PubMed] [Google Scholar]
  • 34.Dresselhaus M. S., and Eklund P. C. (2000) Adv. Phys., 49, 705. [Google Scholar]
  • 35.Kneipp K., Kneipp H., Corio P., Brown S. D. M., Shafer K., Motz J., Perelman L. T., Hanlon E. B., Marucci A., Dresselhaus G., and Dresselhaus M. S. (2000) Phys. Rev. Lett., 84, 3470. [DOI] [PubMed] [Google Scholar]
  • 36.Otto A., Billmann J., Eickmans J., Ertuerk U., and Pettenkofer C. (1984) Surf. Sci., 138, 319. [Google Scholar]
  • 37.Moskovits M. (1985) Rev. Modern Phys., 57, 783. [Google Scholar]
  • 38.Campion A., and Kambhampati P. (1998) Chem. Soc. Rev., 27, 241. [Google Scholar]
  • 39.Kneipp K., Kneipp H., Kartha V. B., Manoharan R., Deinum G., Itzkan I., Dasari R. R., and Feld M. S. (1998) Phys. Rev., E57, 6281. [Google Scholar]
  • 40.Becke A. D. (1993) J. Chem. Phys., 98, 5648. [Google Scholar]
  • 41.Lee C., Yang W., and Parr R. G. (1988) Phys. Rev., B37, 785. [DOI] [PubMed] [Google Scholar]
  • 42.Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheesemann J. R., Zakrzewski V. G., Montgomery J. A. Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Baboul A. G., Stafanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., and Pople J. A. computer code GAUSSIAN98 Revision A.9 (Gaussian Inc., Pittsburgh, PA, 1998) [Google Scholar]
  • 43.Stewart R. F., and Jensen L. H. (1964) J. Chem. Phys., 40, 2071. [Google Scholar]
  • 44.Denk W., Strickler J. H., and Webb W. W. (1990) Science, 248, 73. [DOI] [PubMed] [Google Scholar]
  • 45.Kawata S., Sun H.-B., Tanaka T., and Takada T. (2001) Nature, 412, 667. [DOI] [PubMed] [Google Scholar]
  • 46.Shen Y. R. (1984) The Principles of Nonlinear Optics, Wiley: New York. [Google Scholar]
  • 47.Zumbusch A., Holtom G. R., and Xie X. S. (1999) Phys. Rev. Lett., 82, 4142. [Google Scholar]
  • 48.Hashimoto M., Araki T., and Kawata S. (2000) Opt. Lett., 25, 1768. [DOI] [PubMed] [Google Scholar]
  • 49.Hashimoto M., and Araki T. (2001) J. Opt. Soc. Am., A18, 771. [DOI] [PubMed] [Google Scholar]
  • 50.Cheng J.-X., Volkmer A., and Xie X. S. (2002) J. Opt. Soc. Am., B19, 1363. [Google Scholar]
  • 51.Liang E. J., Weippert A., Funk J. M., Materny A., and Kiefer W. (1994) Chem. Phys. Lett., 227, 115. [Google Scholar]
  • 52.Ichimura T., Hayazawa N., Hashimoto M., Inouye Y., and Kawata S. (2003) J. Raman Spectrosc., 34, 651. [Google Scholar]
  • 53.Ichimura T., Hayazawa N., Hashimoto M., Inouye Y., and Kawata S. (2004) Appl. Phys. Lett., 84, 1768. [DOI] [PubMed] [Google Scholar]
  • 54.Hecht B., Bielefeldt H., Inouye Y., Pohl D. W., and Novotny L. (1997) J. Appl. Phys., 81, 2492. [DOI] [PubMed] [Google Scholar]
  • 55.Boyd G. T., Yu Z. H., and Shen Y. R. (1986) Phys. Rev., B33, 7923. [DOI] [PubMed] [Google Scholar]
  • 56.Wilcoxon J. P., and Martin J. E. (1998) J. Chem. Phys., 108, 9137. [Google Scholar]
  • 57.Tanaka S., Cai L. T., Tabata H., and Kawai T. (2001) Jpn. J. Appl. Phys., 40, L407. [Google Scholar]
  • 58.For the estimation of the excited volume, the tip-enhanced local excitation spot was assumed to be a sphere with 20 nm diameter centered at the tip end in which the excitation efficiency is uniform. The locally excited volume is defined as the volume overlapped by the excitation spot and the sample. In these assumptions, the excited volume is approximately a column with 2.5 nm height and 20 nm diameter.
  • 59.For the estimation of enhancement factor, CARS intensity of a DNA cluster without the silver tip was preliminarily measured, then the efficiency of the CARS emission per unit volume, peak power and repetition rate was estimated. Using the estimated efficiency, the enhancement factor is derived.

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES