Abstract
A number of inorganic and organic materials exhibit redox states (reduced and/or oxidised forms) with distinct UV-Visible (electronic) absorption bands. When electrochemical switching of these redox states gives rise to different colours (i.e. new or different visible region bands), the material is described as being electrochromic. By virtue of their numerous applications, both of academic and commercial interest, electrochromic materials are currently attracting a great deal of interest. This review provides an introduction to the major classes of electrochromic materials, namely transition metal oxides, Prussian blue systems, viologens, conducting polymers, transition metal and lanthanide coordination complexes and metallopolymers, and metal phthalocyanines. Examples of some new materials and of prototype and commercial electrochromic devices are cited.
Full Text
The Full Text of this article is available as a PDF (154.6 KB).
References
- 1.Rauh R.D. (1999) Electrochromic windows: an overview. Electrochim. Acta, 44(18), 3165–3176. [Google Scholar]
- 2.Rosseinsky D.R., & Mortimer R.J. (2001) Electrochromic systems and the prospects for devices. Adv. Mater., 13(11), 783–793. [Google Scholar]
- 3.Granqvist C.G. (2000) Electrochromic tungsten oxide films: review of progress 1993-1998. Sol. Energy Mater. Sol. Cells, 60(3), 201–262. [Google Scholar]
- 4.Granqvist C.G. (1999) Progress in electrochromics: tungsten oxide revisited. Electrochim. Acta, 44(18), 3005–3015. [Google Scholar]
- 5.Mortimer R.J. (1999) Organic electrochromic materials. Electrochim. Acta, 44(18), 2971–2981. [Google Scholar]
- 6.Mortimer R.J. (1997) Electrochromic materials. Chem. Soc. Rev., 26(3), 147–156. [Google Scholar]
- 7.Monk P.M.S., Mortimer R.J., & Rosseinsky D.R. (1995) Through a glass darkly. Chem. Br, 31(5), 380–382. [Google Scholar]
- 8.Bessière A., Marcel C., Morcrette M., Tarascon J.-M., Lucas V., Viana B., & Baffier N. (2002) Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. J. Appl. Phys., 91(3), 1589–1594. [Google Scholar]
- 9.Kras˘rovec U.O., Vuk A.S˘r., & Orel B. (2002) Comparative studies of “all sol-gel” electrochromic windows employing various counter-electrodes. Sol. Energy Mater. Sol. Cells, 73(1), 21–37. [Google Scholar]
- 10.Bell J.M., Skryabin I.L., & Koplick A.J. (2001) Large area electrochromic films – preparation and performance. Sol. Energy Mater. Sol. Cells, 68(3-4), 239–247. [Google Scholar]
- 11.Grätzel M. (2001) Ultrafast colour displays. Nature, 409(6820 Feb 1), 575–576. [DOI] [PubMed] [Google Scholar]
- 12.Cummins D., Boschloo G., Ryan M., Corr D., Rao S.N., & Fitzmaurice D. (2000) Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B, 104(48), 11449–11459. [Google Scholar]
- 13.Hale J.S., & Woollam J.A. (1999) Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 339(1-2), 174–180 [Google Scholar]
- 14.Liu S., Kurth D.G., Möhwald H., & Volkmer D. (2002) A thin-film electrochromic device based on a polyoxometalate cluster. Adv. Mater., 14(3), 225–228. [Google Scholar]
- 15.Monk P.M.S., Delage F., & Vieira S.M.C. (2001) Electrochromic paper: utility of electrochromes incorporated in paper. Electrochim. Acta, 46(13-14), 2195–2202. [Google Scholar]
- 16.Michaelis A., Berneth H., Haarer D., Kostromine S., Neigl R., & Schmidt R. (2001) Electrochromic dye system for smart window applications. Adv. Mater. 13(23), 1825–1828. [Google Scholar]
- 17.Gomez-Romero P. (2001) Hybrid organic-inorganic materials- in search of synergic activity. Adv. Mater., 13(3), 163–174. [Google Scholar]
- 18.Groenendaal L., Jonas F., Freitag D., Pielartzik H., & Reynolds J.R. (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater., 12(7), 481–494. [Google Scholar]
- 19.Reeves B.D., Thompson B.C., Abboud K.A., Smart B.E., & Reynolds J.R. (2002) Dual cathodically and anodically coloring electrochromic polymer based on a spiro bipropylenedioxythiophene [(poly(spiroBiProDOT)]. Adv. Mater., 14(10), 717–719. [Google Scholar]
- 20.Notten P.H.L. (1999) Electrochromic metal hydrides. Curr. Opin. Solid State Mater. Sci. 4(1), 5–10. [Google Scholar]
- 21.Mercier V.M.M., & van der Sluis P. (2001) Toward solid-state switchable mirrors using a zirconium oxide proton conductor. Solid State Ionics, 145(1-4), 17–24. [Google Scholar]
- 22.McCleverty J.A., Ward M.D., & Jones C.J. (2001) Redox-activity in complexes with Mo(NO) and Mo(O) cores: facts and consequences. Comments Inorganic Chem., 22(5), 293–326. [Google Scholar]
- 23.McDonagh A.M., Bayly S.R., Riley D.J., Ward M.D., McCleverty J.A., Cowin M.A., Morgan C.N., Varrazza R., Penty R.V., & White I.H. (2000) A variable optical attenuator operating in the near-infrared region based on an electrochromic molybdenum complex. Chem. Mater., 12(9), 2523–2524. [Google Scholar]
- 24.Gan J., Tian H., Wang Z., Chen K., Hill J., Lane P.A., Rahn M.D., Fox A.M., & Bradley D.D.C. (2002) Synthesis and luminescence properties of novel ferrocene-naphthalimides dyads. J. Organomet. Chem., 645(1-2), 168–175. [Google Scholar]
- 25.Trombach N., Hild O., Schlettwein D., & Wöhrle D. (2002) Synthesis and electropolymerisation of pyrrol-1-yl substituted phthalocyanines. J. Mater. Chem., 12(4), 879–885. [Google Scholar]