Abstract
All materials possess interatomic or interionic voids that are typically too small for any molecular species to enter. However, there is a class of crystalline materials that contain internal voids, and apertures, that are large enough for molecular species to enter and pass through. These materials are termed microporous and form a highly diverse group of compounds that may be synthesised or occur as natural minerals. The composition of microporous materials ranges from being exclusively inorganic to inorganic-organic hybrids and their applications vary from 1 Mton annual usage in detergents, to hosts for superconducting carbon nan-otubes. In this contribution, new and mature aspects of the synthesis, scope, modification and application of microporous materials are covered to provide the reader with an overview of this exciting field of materials chemistry.
Full Text
The Full Text of this article is available as a PDF (473.3 KB).
References
- 1.Csicsery S.M. (1986) Catalysis by shape selective zeolites – science and technology. Pure Appl. Chem., 58, 841–856. [Google Scholar]
- 2.Camblor M. A., Diaz-Cabanas M.J., Peez-Pariente J., Teat S.J., Clegg W., Shannon I.J., Lightfoot P., Wright P.A., & Morris R.E. (1998) SSZ-23: An odd zeolite with pore openings of seven and nine tetrahedral atoms. Angew. Chem. Int. Ed., 37, 2122–2126. [DOI] [PubMed] [Google Scholar]
- 3.Freyhardt C.C., Tsapatsis M., Lobo R.F., Balkus K.J., & Davis M.E. (1996) A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381, 295–298. [Google Scholar]
- 4.Holmgren J., Bem D., Bricker M., Gillespie R., Lewis G., Akporiaye D., Dahl I., Karlsson A., Plassen M., & Wendelbo R. (2001) Application of combinatorial tools to the discovery and commercialisation of microporous solids: facts and fiction. Stud. Surf. Sci. Catal., 135, 113–122. [Google Scholar]
- 5.Meier W.M., Olsen D.H., & Baerlocher C. (1996) Atlas of Zeolite Structure Types. Elsevier, London. [Google Scholar]
- 6.Davis M. E. (2002) Ordered porous material for emerging applications. Nature, 417, 813–821. [DOI] [PubMed] [Google Scholar]
- 7.Cheetham A. K., Ferey G., & Loiseau T. (1999) Open-framework inorganic materials. Angew. Chem. Int. Ed., 38, 3268–3292. [PubMed] [Google Scholar]
- 8.Ferey G. (2001) Microporous solids: from organically templated inorganic skeletons to hybrid frameworks … ecumenism in chemistry. Chem. Mater., 13, 3084–3098. [Google Scholar]
- 9.Guillou N., Gao Q., Forster P.M., Chang J.S., Nogus M., Parl S.E., Ferey G., & Cheetham A.K. (2001) Nickel (II) phosphate VSB-5: a magnetic nanoporous hydrogeation catalyst with 24-ring tunnels. Angew. Chem. Int. Ed., 40, 2831–2834. [DOI] [PubMed] [Google Scholar]
- 10.Rocha J., & Anderson M. W. (2000) Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. Eur. J. Inorg. Chem., 801–818. [Google Scholar]
- 11.King L.M., Gisselquist J., Koster S.C., Bem D.S., Broach R.W., Song S.G., & Bedard R.L. (2001) Synthesis, characterization, and strucutral aspects of novel microporous indium silicates. Stud. Surf. Sci. Catal., 135, 247 [CD-ROM] Paper 05-P-16. [Google Scholar]
- 12.Cheetham A. K., Fjellvag H., Gier T. E., Kongshaug K. O., Lillerud K. P., & Stucky G. D. (2001) Very open microporous materials: from concept to reality. Stud. Surf. Sci. Catal., 135, 158 [CD-ROM] Paper 05-O-05. [Google Scholar]
- 13.Nyman M., Tripathi A., Parise J.B., Maxwell R.S., Harrison W.T.A., & Nenoff T.M. (2001) A new family of octahedral molecular sieves: sodium Ti/Zr(IV) niobates. J. Am. Chem. Soc., 123, 1529–1530. [Google Scholar]
- 14.Li H., Laine A., O'Keefe M., & Yaghi O. M. (1999) Supertetrahedral sulfide crystals with giant cavities and channels. Science, 283, 1145–1147. [DOI] [PubMed] [Google Scholar]
- 15.Martin J. D., & Greenwood K. B. (1997) Halozeotypes: a new generation of zeolite-type materials. Angew. Chem. Int. Ed., 36, 2072–2075 [Google Scholar]
- 16.Huppertz H., & Schnick W. (1997) Ba2Nd7Si11N23-a nitridosilicate with a zeolite-analogous Si-N structure. Angew. Chem. Int. Ed., 36, 2651–2652. [Google Scholar]
- 17.Orth M., Hoffmann R.D., Pottgen R., & Schnick W. (2001) Orthonitridoborate ions [BN3]6- in oxonitridosilicate cages: synthesis, crystal structure, and magnetic properties of Ba4Pr7[Si12N23O][BN3], Ba4Nd7[Si12N23O][BN3], and Ba4Sm7[Si12N23O][BN3]. Chem. Eur. J., 7, 2791–2797. [DOI] [PubMed] [Google Scholar]
- 18.Chui S. S. Y., Lo S. M. F., Charmant J. P. H., Orpen A. G., & Williams I. D. (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 283, 1148–1150. [DOI] [PubMed] [Google Scholar]
- 19.Chen B., Eddaoudi M., Hyde S.T., O'Keefe M., & Yaghi O.M. (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science, 291, 1021–1023. [DOI] [PubMed] [Google Scholar]
- 20.Li H., Eddaoudi M., O'Keefe M., & Yaghi O. M. (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276–279. [Google Scholar]
- 21.Eddaoudi M., Kim J., Rosi N., Vodak D., Watcher J., O'Keefe M., & Yaghi O. M. (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 295, 469–472. [DOI] [PubMed] [Google Scholar]
- 22.Bellussi G., & Rigutto M.S. (2001) Metal ions associated to molecular sieve frameworks as catalytic sites for selective oxidation reactions. In: van Bekkum H., Flanigen E.M., Jacobs P.A., & Jansen J.C. (eds), Introduction to Zeolite Science and Practice., Stud. Surf. Sci. Catal., 137, Chapter 19, 911–956, Elsevier, Amsterdam. [Google Scholar]
- 23.Jones C.W., Tsuji K., & Davis M.E. (1998) Organic-functionalised molecular sieves as shape-selective catalysts. Nature, 393, 52–54. [Google Scholar]
- 24.de Vos D.E., & Jacobs P.A. (2001) Zeolite-based supramolecular assemblies. In: van Bekkum H., Flanigen E.M., Jacobs P.A., & Jansen J.C. (eds), Introduction to Zeolite Science and Practice., Stud. Surf. Sci. Catal., 137, Chapter 20, 957–986, Elsevier, Amsterdam. [Google Scholar]
- 25.Townsend R.P., & Coker E.N. (2001) Ion exchange in zeolites. In: van Bekkum H., Flanigen E.M., Jacobs P.A., & Jansen J.C. (eds), Introduction to Zeolite Science and Practice., Stud. Surf. Sci. Catal., 137, Chapter 11, 467–524, Elsevier, Amsterdam. [Google Scholar]
- 26.Newsam J.M. (1992) Zeolites. In: Cheetham A.K., & Day P. (eds), Solid State Chemistry Compounds., Chapter 7, 234–280Oxford University Press, Oxford. [Google Scholar]
- 27.Kuznicki S.M., Bell V.A., Nair S., Hillhouse H.W., Jacubinas R.M., Braunbarth C.M., Toby B.H., & Tsapatsis M. (2001) A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature, 412, 720–724. [DOI] [PubMed] [Google Scholar]
- 28.Maxwell I. E., & Stork W. H. J. (2001) Hydrocarbon processing with zeolites. In: van Bekkum H., Flanigen E.M., Jacobs P.A., & Jansen J.C. (eds), Introduction to Zeolite Science and Practice., Stud. Surf. Sci. Catal., 137, Chapter 17, 747–820, Elsevier, Amsterdam. [Google Scholar]
- 29.Marcilly C. (2001) Evolution of refining and petrochemicals. What is the place of zeolites? Stud. Surf. Sci. Catal., 135, 37–60. [Google Scholar]
- 30.Holderich W.F., & van Bekkum H. (2001) Zeolites and related materials in organic syntheses. Brönsted and Lewis catalysis. In: van Bekkum H., Flanigen E.M., Jacobs P.A., & Jansen J.C. (eds), Introduction to Zeolite Science and Practice., Stud. Surf. Sci. Catal., 137, Chapter 18, 821–910, Elsevier, Amsterdam. [Google Scholar]
- 31.Mintova S., Mo S., & Bein T. (2001) Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem. Mater., 13, 901–905. [Google Scholar]
- 32.Vietze U., Krauss O., Laeri F., Ihlein G., Schuth F., Limburg B., & Abraham M. (1998) Zeolite-dye microlasers. Phys. Rev. Lett., 81, 4628–4631. [Google Scholar]
- 33.Wang N., Tang Z. K., Li G.D., & Chen J. S. (2000) Single-walled 4Å carbon nanotube arrays. Nature, 408, 50–51. [DOI] [PubMed] [Google Scholar]
- 34.Tang Z. K., Zhang L., Wang N., Zhang X.X., Wen G.H., Li G.D., Wang J.N., Chan C.T., & Sheng P. (2001) Superconductivity in 4 Angstrom singlewalled carbon nanotubes. Science, 292, 2462–2465. [DOI] [PubMed] [Google Scholar]
