Abstract
The sensory organs – the eye, ear, and nose- are formed, in part, from ectodermal thickenings: placodes. Their development is distinct from that of other regions of the developing body and they are essential for the development of other structures. For example, the olfactory placode which gives rise to the nose is essential for the functional development of the reproductive organs and hence fertility. Recently much progress has been made in the understanding of placode development, at both a molecular and embryological level. This is important as abnormal development of placodes occurs in a number of human syndromes. Furthermore, knowledge of placode development will give insight into therapeutic strategies to prevent degenerative change such as deafness. This review highlights the current knowledge of placode development and the future challenges in unravelling the cascades of signalling interactions that control development of these unique structures.
Keywords: sensory organs
Full Text
The Full Text of this article is available as a PDF (335.4 KB).
References
- 1.Baker C.V., & Bronner-Fraser M. (2001) Vertebrate cranial placodes I. Embryonic induction. Dev. Biol., 232, 1–61. [DOI] [PubMed] [Google Scholar]
- 2.Soussi-Yanicostas N., Faivre-Sarrailh C., Hardelin J.P., Levilliers J., Rougon G., & Petit C. (1998) Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J. Cell Sci., 111, 2953–2965. [DOI] [PubMed] [Google Scholar]
- 3.Breitman M.L., Bryce D.M., Giddens E., Clapoff S., Goring D., Tsui L.C., Klintworth U.K., & Bernstein A. (1989) Analysis of lens cell fate and eye morphogenesis in transgenic mice ablated for cells of the lens lineage. Development, 106, 457–463. [DOI] [PubMed] [Google Scholar]
- 4.Harrington L., Klintworth U.K., Secor T.E., & Breitman M.L. (1991) Developmental analysis of ocular morphogenesis in alpha A- crystallin/diph-theria toxin transgenic mice undergoing ablation of the lens. Dev. Biol., 148, 508–516. [DOI] [PubMed] [Google Scholar]
- 5.Beebe D.C., & Coats J.M. (2000) The lens organizes the anterior segment: specification of neural crest cell differentiation in the avian eye. Dev Biol., 220, 424–431. [DOI] [PubMed] [Google Scholar]
- 6.Thut C.J., Rountree R.B., Hwa M., & Kingsley D.M. (2001) A large-scale in situ screen provides molecular evidence for the induction of eye anterior segment structures by the developing lens. Dev. Biol., 231, 63–76. [DOI] [PubMed] [Google Scholar]
- 7.Baker C.V., & Bronner-Fraser M. (1997) The origins of the neural crest. Part II: an evolutionary perspective. Mech. Dev., 69, 13–29. [DOI] [PubMed] [Google Scholar]
- 8.Wada H., Saiga H., Satoh N., & Holland P.W. (1998) Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development., 125, 1113–1122. [DOI] [PubMed] [Google Scholar]
- 9.Bone Q., & Ryan K.P. (1978) Cupular sense organs in Ciona (Tunicata: Ascidiacea). J. Zool. Lond., 186, 417–129. [Google Scholar]
- 10.Webb J.F., & Noden D.M. (1993) Ectodermal placodes: contributions to the development of the vertebrate head. Amer. Zool., 33, 434–447. [Google Scholar]
- 11.Schwanzel-Fukuda M., & Pfaff D.W. (1990) The migration of luteinizing hormone-releasing hormone (LHRH) neurons from the medial olfactory placode into the medial basal forebrain. Experientia, 46, 956–962. [DOI] [PubMed] [Google Scholar]
- 12.Eisthen H.L., Delay R.J., Wirsig-Wiechmann C.R., & Dionne V.E. (2000) Neuromodulatory effects of gonadotropin releasing hormone on olfactory receptor neurons. J. Neurosci., 20, 3947–3955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Zhang P., Wong C., DePinho R.A., Harper J.W., & Elledge S.J. (1998) Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev., 12, 3162–3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Lang H., Bever M.M., & Fekete D.M. (2000) Cell proliferation and cell death in the developing chick inner ear: spatial and temporal patterns. J. Comp. Neurol., 417, 205–220. [DOI] [PubMed] [Google Scholar]
- 15.Toffes M., & Uiraldez F. (1998) The development of the vertebrate inner ear. Mech. Dev., 71, 5–21. [DOI] [PubMed] [Google Scholar]
- 16.Brigande J.V., Kiernan A.E., Gao X., Iten L.E., & Fekete D.M. (2000) Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc. Natl. Acad. Sci. USA, 97, 11700–11706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Jacobson A.G. (1966) Inductive processes in embryonic development. Science, 152, 25–34. [DOI] [PubMed] [Google Scholar]
- 18.Grainger R.M., Henry J.J., Saha M.S., & Servetnick M. (1992) Recent progress on the mechanisms of embryonic lens formation. Eye, 6, 117–122. [DOI] [PubMed] [Google Scholar]
- 19.Ladher R.K., Anakwe K.U., Gurney A.L., Schoenwolf G.C., & Francis-West P.H. (2000) Identification of synergistic signals initiating inner ear development. Science, 290, 1965–1967. [DOI] [PubMed] [Google Scholar]
- 20.Jacobson A.G., & Sater A.K. (1988) Features of embryonic induction. Development, 104, 341–359. [DOI] [PubMed] [Google Scholar]
- 21.LaMantia A.S., Colbert M.C., & Linney E. (1993) Retinoic acid induction and regional differentiation prefigure olfactory pathway formation in the mammalian forebrain. Neuron, 10, 1035–1048. [DOI] [PubMed] [Google Scholar]
- 22.LaMantia A.S., Bhasin N., Rhodes K., & Heemskerk J. (2000) Mesenchymal/epithelial induction mediates olfactory pathway formation. Neuron, 28, 411–425. [DOI] [PubMed] [Google Scholar]
- 23.Matsuo T., Osumi-Yamashita N., Noji S., Ohuchi H., Koyama E., Myokai F., Matsuo N., Taniguchi S., Doi H., Iseki S. et al. (1993) A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat. Genet., 3, 299–304. [DOI] [PubMed] [Google Scholar]
- 24.Kramer P.R., & Wray 5. (2000) Midline nasal tissue influences nestin expression in nasalplacode- derived luteinizing hormone-releasing hormone neurons during development. Dev. Biol., 227, 343–357. [DOI] [PubMed] [Google Scholar]
- 25.Ekker S.C., Ungar A.R., Greenstein P., von Kessler D.R., Porter J.A., Moon R.T., & Beachy P.A. (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol., 5, 944–955. [DOI] [PubMed] [Google Scholar]
- 26.Macdonald R., Barth K.A., Xu Q., Holder N., Mikkola I., & Wilson S.W. (1995) Midline signalling is required for Pax gene regulation and patterning of the eyes. Development, 121, 3267–3278. [DOI] [PubMed] [Google Scholar]
- 27.Li H., Tierney C., Wen L., Wu J.Y., & Rao Y. (1997) A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development, 124, 603–615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Collinson J.M., Hill R.E., & West J.D. (2000) Different roles for Pax6 in the optic vesicle and facial epithelium mediate early morphogenesis of the murine eye. Development, 127, 945–956. [DOI] [PubMed] [Google Scholar]
- 29.Wodarz A., & Nusse R. (1998) Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol., 14, 59–88. [DOI] [PubMed] [Google Scholar]
- 30.Shackleford G.M., MacArthur C.A., Kwan H.C., & Varmus H.E. (1993) Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt- 1 transgenic mice by insertional activation of int-2IFgf-3 and hst/Fgf-4. Proc. Natl. Acad. Sci. USA, 90, 740–744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Kramer P.R., Guerrero U., Krishnamurthy R., Mitchell P.J., & Wray S. (2000) Ectopic expression of luteinizing hormone-releasing hormone and peripherin in the respiratory epithelium of mice lacking transcription factor AP-2alpha. Mech. Dev., 94, 79–94. [DOI] [PubMed] [Google Scholar]
- 32.Fujiwara M., Uchida T., Osumi-Yamashita N., & Eto K. (1994) Uchida rat (rSey): a new mutant rat with craniofacial abnormalities resembling those of the mouse Sey mutant. Differentiation, 57, 31–38. [DOI] [PubMed] [Google Scholar]
- 33.Blixt A., Mahlapuu M., Aitola M., Pelto-Huikko M., Enerback S., & Carlsson P. (2000) A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev., 14, 245–254. [PMC free article] [PubMed] [Google Scholar]