Abstract
The properties of a metal coordination complex are determined as much by the ligand set – the molecules and ions coordinated to the metal centre – as by the nature of the metal itself. The design and use of new ligands is consequently a major part of chemical research. This review considers the role of multifunctional ligands in three separate and distinct areas of chemistry. In homogeneous catalysis, the role of hybrid and hemilabile ligands is considered, and the introduction of functionalities designed to overcome problems of separation, either by tethering or solubilising, is discussed. In supramolecular chemistry, functionalities enabling the recognition and sensing of cations and anions are examined. In addition, ligands containing two or more faces are discussed for their role in metallodendrimer formation and self-assembly reactions, and the use of bifunctional ligands in crystal engineering is addressed. The application of metal complexes in medicine is examined by consideration of cis-platin and its derivatives as antitumour agents. Imaging agents are also discussed with the uses of gadolinium MRI contrast agents and γ-emitting technetium complexes highlighted.
Full Text
The Full Text of this article is available as a PDF (506.0 KB).
References
- 1.Wilkinson G., Gillard R. D., & McCleverty J. A. (eds) (1987) Comprehensive Coordination Chemistry, Vol. 2: Ligands. Pergamon, Oxford. [Google Scholar]
- 2.Slone C. S., Weinberger D. A., & Mirkin C. A. (1999) The transition metal coordination chemistry of hemilabile ligands. Prog. Inorg. Chem., 48, 233–350. [Google Scholar]
- 3.Braunstein P., & Naud F. (2001) Hemilability of hybrid ligands and the coordination chemistry of oxazoline-based systems. Angew. Chem., Int. Ed., 40, 680–699. [DOI] [PubMed] [Google Scholar]
- 4.Burrows A. D., Mahon M. F., & Palmer M. T. (2000) Amine-functionalised aminophosphines: synthesis, reversible coordination to platinum and use in heteronuclear dimer formation. J. Chem. Soc., Dalton Trans., 3615–3619. [Google Scholar]
- 5.Britovsek G. J. P., Gibson V. C., & Wass D. F. (1999) The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew. Chem., Int. Ed., 38, 428–447. [DOI] [PubMed] [Google Scholar]
- 6.Canali L., & Sherrington D. C. (1999) Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem. Soc. Rev., 28, 85–93. [Google Scholar]
- 7.Katti K. V., Gali H., Smith C. J., & Berning D. E. (1999) Design and development of functionalized water-soluble phosphines: catalytic and biomedical implications. Acc. Chem. Res., 32, 9–17. [Google Scholar]
- 8.Joó F., & Kathó A. (1997) Recent developments in aqueous organometallic chemistry and catalysis. J. Mol. Catal. A, 116, 3–26. [Google Scholar]
- 9.Horváth I. T. (1998) Fluorous biphase chemistry. Acc. Chem. Res., 31, 641–650. [Google Scholar]
- 10.Lehn J. M. (1988) Supramolecular chemistry – scope and perspectives Molecules, supermolecules, and molecular devices. Angew. Chem., Int. Ed. Engl., 27, 89–112. [Google Scholar]
- 11.Scheerder J., van Duynhoven J. P. M., Engbersen J. F. J., & Reinhoudt D. N. (1996) Solubilization of NaX salts in chloroform by bifunctional receptors. Angew. Chem., Int. Ed. Engl., 35, 1090–1093. [Google Scholar]
- 12.Kim Y.-H., & Hong J.-I. (2002) Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide. Chem. Commun., 512–513. [DOI] [PubMed] [Google Scholar]
- 13.Beer P. D., & Gale P. A. (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem., Int. Ed., 40, 487–516. [PubMed] [Google Scholar]
- 14.Balzani V., Campagna S., Denti G., Juris A., Serroni S., & Venturi M. (1998) Designing dendrimers based on transition metal complexes. Light-harvesting properties and predetermined redox patterns. Acc. Chem. Res., 31, 26–34. [Google Scholar]
- 15.Fujita M. (1998) Metal-directed self-assembly of two- and three-dimensional synthetic receptors. Chem. Soc. Rev., 27, 417–425. [Google Scholar]
- 16.Fujita M., Umemoto K., Yoshizawa M., Fujita N., Kusukawa T., & Biradha K. (2001) Molecular paneling via coordination. Chem. Commun., 509–518. [Google Scholar]
- 17.Funeriu D. P., Lehn J.-M., Fromm K. M., & Fenske D. (2000) Multiple expression of molecular information: Enforced generation of different supramolecular inorganic architectures by processing of the same ligand information through specific coordination algorithms. Chem. Eur. J., 6, 2103–2111. [DOI] [PubMed] [Google Scholar]
- 18.Aakeröy C. B., & Beatty A. M. (2001) Crystal engineering of hydrogen-bonded assemblies – a progress report. Aust. J. Chem., 54, 409–421. [Google Scholar]
- 19.Zaworotko M. J. (2001) Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chem. Commun., 1–9. [Google Scholar]
- 20.Burrows A. D., Mingos D. M. P., White A. J. P., & Williams D. J. (1996) Crystal engineering of metal complexes based on charge-augmented double hydrogen bond interactions between thiosemicarbazides and carboxylates. Chem. Commun., 97–99. [Google Scholar]
- 21.Burrows A. D., Chan C.-W., Chowdhry M. M., McGrady J. E., & Mingos D. M. P. (1995) Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds. Chem. Soc. Rev., 24, 329–339. [Google Scholar]
- 22.Bernhardt P. V. (1999) A supramolecular synthon for H-bonded transition metal arrays. Inorg. Chem., 38, 3481–3483. [DOI] [PubMed] [Google Scholar]
- 23.Allen M. T., Burrows A. D., & Mahon M. F. (1999) Hydrogen bond directed crystal engineering of nickel complexes: the effect of ligand methyl substituents on supramolecular structure. J. Chem. Soc., Dalton Trans., 215–221. [Google Scholar]
- 24.Hambley T. W. (1997) The influence of structure on the activity and toxicity of Pt anti-cancer drugs. Coord. Chem. Rev., 166, 181–223. [Google Scholar]
- 25.Reedijk J. (1996) Improved understanding in platinum antitumour chemistry. Chem. Commun., 801–806. [Google Scholar]
- 26.Guo Z. J., & Sadler P. J. (2000) Medicinal inorganic chemistry. Adv. Inorg. Chem., 49, 183–306. [Google Scholar]
- 27.Caravan P., Ellison J. J., McMurry T. J., & Lauffer R. B. (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev., 99, 2293–2352. [DOI] [PubMed] [Google Scholar]
- 28.Li W.-H., Fraser S. E., & Meade T. J. (1999) A calcium-sensitive magnetic resonance imaging contrast agent. J. Am. Chem. Soc., 121, 1413–1414. [Google Scholar]
- 29.Lowe M. P., Parker D., Reany O., Aime S., Botta M., Castellano G., Gianolio E., & Pagliarin R. (2001) pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation. J. Am. Chem. Soc., 123, 7601–7609. [DOI] [PubMed] [Google Scholar]
- 30.Dilworth J. R., & Parrott S. J. (1998) The biomedical chemistry of technetium and rhenium. Chem. Soc. Rev., 27, 43–55. [Google Scholar]
