Abstract
A review is presented of the manufacture and use of different types of plastic, and the effects of pollution by these materials on animal, human and environmental health, insofar as this is known. Since 2004, the world has made as much plastic as it did in the previous half century, and it has been reckoned that the total mass of virgin plastics ever made amounts to 8.3 billion tonnes, mainly derived from natural gas and crude oil, used as chemical feedstocks and fuel sources. Between 1950 and 2015, a total of 6.3 billion tonnes of primary and secondary (recycled) plastic waste was generated, of which around 9% has been recycled, and 12% incinerated, with the remaining 79% either being stored in landfills or having been released directly into the natural environment. In 2015, 407 million tonnes (Mt) of plastic was produced, of which 164 Mt was consumed by packaging (36% of the total). Although quoted values vary, packaging probably accounts for around one third of all plastics used, of which approximately 40% goes to landfill, while 32% escapes the collection system. It has been deduced that around 9 Mt of plastic entered the oceans in 2010, as a result of mismanaged waste, along with up to 0.5 Mt each of microplastics from washing synthetic textiles, and from the abrasion of tyres on road surfaces. However, the amount of plastics actually measured in the oceans represents less than 1% of the (at least) 150 Mt reckoned to have been released into the oceans over time. Plastic accounts for around 10% by mass of municipal waste, but up to 85% of marine debris items – most of which arrive from land-based sources. Geographically, the five heaviest plastic polluters are P.R. China, Indonesia, Philippines, Vietnam and Sri Lanka, which between them contribute 56% of global plastic waste. Larger, primary plastic items can undergo progressive fragmentation to yield a greater number of increasingly smaller ‘secondary’ microplastic particles, thus increasing the overall surface area of the plastic material, which enhances its ability to absorb, and concentrate, persistent organic pollutants (POPs) such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), with the potential to transfer them to the tissues of animals that ingest the microplastic particles, particularly in marine environments.
Although fears that such microparticles and their toxins may be passed via food webs to humans are not as yet substantiated, the direct ingestion of microplastics by humans via drinking water is a distinct possibility – since 92% of samples taken in the USA and 72% in Europe showed their presence – although any consequent health effects are as yet unclear. Foodstuffs may also become contaminated by microplastics from the air, although any consequent health effects are also unknown. In regard to such airborne sources, it is noteworthy that small plastic particles have been found in human lung tissue, which might prove an adverse health issue under given circumstances. It is also very striking that microplastics have been detected in mountain soils in Switzerland, which are most likely windborne in origin. Arctic ice core samples too have revealed the presence of microplastics, which were most likely carried on ocean currents from the Pacific garbage patch, and from local pollution from shipping and fishing. Thus, sea ice traps large amounts of microplastics and transports them across the Arctic Ocean, but these particles will be released into the global environment when the ice melts, particularly under the influence of a rising mean global temperature.
While there is a growing emphasis toward the substitution of petrochemically derived plastics by bioplastics, controversy has arisen in regard to how biodegradable the latter actually are in the open environment, and they presently only account for 0.5% of the total mass of plastics manufactured globally. Since the majority of bioplastics are made from sugar and starch materials, to expand their use significantly raises the prospect of competition between growing crops to supply food or plastics, similarly to the diversion of food crops for the manufacture of primary biofuels. The use of oxo-plastics, which contain additives that assist the material to degrade, is also a matter of concern, since it is claimed that they merely fragment and add to the environmental burden of microplastics; hence, the European Union has moved to restrict their use.
Since 6% of the current global oil (including natural gas liquids, NGLs) production is used to manufacture plastic commodities – predicted to rise to 20% by 2050 – the current approaches for the manufacture and use of plastics (including their end-use) demand immediate revision. More extensive collection and recycling of plastic items at the end of their life, for re-use in new production, to offset the use of virgin plastic, is a critical aspect both for reducing the amount of plastic waste entering the environment, and in improving the efficiency of fossil resource use. This is central to the ideology underpinning the circular economy, which has common elements with permaculture, the latter being a regenerative design system based on ‘nature as teacher’, which could help optimise the use of resources in town and city environments, while minimising and repurposing ‘waste’. Thus, food might be produced more on the local than the global scale, with smaller inputs of fuels (including transportation fuels for importing and distributing food), water and fertilisers, and with a marked reduction in the use of plastic packaging. Such an approach, adopted by billions of individuals, could prove of immense significance in ensuring future food security, and in reducing waste and pollution – of all kinds.
Keywords: plastics, plastic pollution, plastic waste, polymer, ocean gyre, Great Pacific garbage patch, microplastics, nanoplastics, nurdles, plastic recycling, circular economy, compostable plastics, bioplastics, biodegradable plastics, marine debris, marine litter, marine pollution, plastic manufacture, permaculture
Full Text
The Full Text of this article is available as a PDF (4.6 MB).
12. References
- 1.Wikiquote (2018) The Graduate. https://en.wikiquote.org/wiki/The_Graduate [accessed 17 May 2018].
- 2.Geyer R., Jambeck J.R., and Law K.L. (2017) Sci. Adv., 3, e1700782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wikipedia (2018) Thermoplastic. https://en.wikipedia.org/wiki/Thermoplastic [accessed 17 May 2018].
- 4.Wikipedia (2018) Thermosetting polymer. https://en.wikipedia.org/wiki/Thermosetting_polymer [accessed 17 May 2018].
- 5.Fenichell S. (1996) Plastic: the making of a synthetic century. HarperBusiness, New York. [Google Scholar]
- 6.UK Patent Office (1865) Patents for inventions [ebook], p. 255. ReInk Books.https://books.google.co.uk/books?id=0nCoU-2tAx8C&pg=PA255&redir_esc=y#v=onepage&q&f=false [accessed 17 May 2018]. [Google Scholar]
- 7.Vitale T. (2009) History, science and storage of acetate film base. http://videopreservation.conservation-us.org/library/history_science_storage_of_acetate_base_film_16b.pdf [accessed 18 May 2018].
- 8.Baumann E. (1872) Ann. Chem. Phar., 163, 308–322. [Google Scholar]
- 9.Von Pechmann H. (1898) Ber. Dtsch. Chem. Ges., 31, 2640–2646. [Google Scholar]
- 10.Wikipedia (2018) Bakelite. https://en.wikipedia.org/wiki/Bakelite [accessed 17 May 2018].
- 11.Wikipedia (2018) Timeline of plastic development. https://en.wikipedia.org/wiki/Timeline_of_plastic_development [accessed 17 May 2018].
- 12.Staudinger H. (1953) Macromolecular chemistry. https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1953/staudinger-lecture.pdf [accessed 17 May 2018].
- 13.Staudinger H. (1920) Ber. Dtsch. Chem. Ges., 53, 1073–1085. [Google Scholar]
- 14.Mülhaupt R. (2004) Angew. Chem. Int. Ed., 43, 1054–1063. [DOI] [PubMed] [Google Scholar]
- 15.Morawetz H. (1995) Macromol. Symp., 98, 1173–1184. [Google Scholar]
- 16.Paul H.C., and Lodge P.T. (2007) Polymer chemistry, second ed., pp. 336, 338–339. Boca Raton, CRC. [Google Scholar]
- 17.Smith J.K., and Hounshell D.A. (1985) Science, 229, 436–442. [DOI] [PubMed] [Google Scholar]
- 18.Staudinger H., Heuer W., Husemann E., and Rabinovitch I.J. (1936) Trans. Faraday Soc., 32, 323–335. [Google Scholar]
- 19.Columbia Electronic Encyclopedia (2012) Plastic. https://www.infoplease.com/encyclopedia/science-and-technology/chemistry/organic-chemistry/plastic [accessed 18 May 2018].
- 20.Wikipedia (2018) Plastics. https://en.wikipedia.org/wiki/Plastic#Common_plastics [accessed 18 May 2018].
- 21.Ellen MacArthur Foundation (2017) The new plastics economy. https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action [accessed 18 May 2018].
- 22.Rhodes C.J. (2016) Sci. Prog., 99, 97–104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Political Economist (2016) World energy 2016–2050: annual report. http://peakoilbarrel.com/world-energy-2016-2050-annual-report/ [accessed 18 May 2018].
- 24.Tullo A.H. (2016) Chem. Eng. News, 94, 32–37. [Google Scholar]
- 25.Rhodes C.J. (2017) Sci. Prog., 100, 80–129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Natural Resources Defense Council (2013) Food facts. https://www.nutrition.va.gov/docs/Sustainability/foodwaste_2pgr.pdf [accessed 18 May 2018].
- 27.Hammer J., Kraak M.H., and Parsons J.R. (2012) Rev. Environ. Contam. Toxicol., 220, 1–44. [DOI] [PubMed] [Google Scholar]
- 28.Mattsson K., Hansson L.-A., and Cedervall T. (2015) Environ. Sci. Process. Impact., 17, 1712–1721. [DOI] [PubMed] [Google Scholar]
- 29.Rhodes C.J. (2011) Sci. Prog., 94, 339–413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Rhodes C.J. (2012) Sci. Prog., 95, 345–446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Rochman C.M., Kross S.M., Armstrong J.B. et al. (2015) Environ. Sci. Technol., 49, 10759–10761. [DOI] [PubMed] [Google Scholar]
- 32.Driedger A.G.J., Dürr H.H., Mitchell K., and Van Cappellen P. (2015) J. Great Lakes Res., 41, 9–19. [Google Scholar]
- 33.National Ocean Service (2018) What are microplastics? https://oceanservice.noaa.gov/facts/microplastics.html [accessed 20 May 2018].
- 34.Cole M., Lindeque P., Halsband C., and Galloway T.S. (2011) Mar. Pollut. Bull., 62, 2588–2597. [DOI] [PubMed] [Google Scholar]
- 35.Browne M.A., Crump P., Niven S.J. et al. (2011) Environ. Sci. Technol., 45, 9175–9179. [DOI] [PubMed] [Google Scholar]
- 36.GESAMP (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment, p. 96. International Maritime Organization, London. http://ec.europa.eu/environment/marine/good-environmental-status/descriptor-10/pdf/GESAMP_microplastics%20full%20study.pdf [accessed 20 May 2018]. [Google Scholar]
- 37.The Pacific Protection Initiative (2007) AB258: Nurdles. https://web.archive.org/web/20080420095307/http://healthebay.org/currentissues/ppi/bills_AB258.asp [accessed 20 May 2018].
- 38.Rehse S., Kloas W., and Zarfl C. (2018) Int. J. Environ. Res. Public Health, 15, 280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Faure F., Demars C., Wieser O. et al. (2015) Environ. Chem., 12, 582–591. [Google Scholar]
- 40.Yonkos L.T., Friedel E.A., Perez-Reyes A.C. et al. (2014) Environ. Sci. Technol., 48, 14195–14202. [DOI] [PubMed] [Google Scholar]
- 41.McCormick A.R., Hoellein T.J., London M.G. et al. (2016) Ecosphere, 7, e01556. [Google Scholar]
- 42.Lebreton L.C.M., van der Zwet J., Damsteeg J.-W. et al. (2017) Nat. Commun., 8, 15611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Zhao S., Zhu L., Wang T., and Li D. (2014) Mar. Pollut. Bull., 86, 562–568. [DOI] [PubMed] [Google Scholar]
- 44.Lozano R.L., and Mouat J. (2009) Marine litter in the North-East Atlantic region: assessment and priorities for response. OSPAR Commission, London, UK.https://qsr2010.ospar.org/media/assessments/p00386_Marine_Litter_in_the_North-East_Atlantic_with_addendum.pdf [accessed 20 May 2018]. [Google Scholar]
- 45.Koelmans A.A., Bakir A., Burton G.A., and Janssen C.R. (2016) Environ. Sci. Technol., 50, 3315–3326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Lohmann R. (2017) Integr. Environ. Assess. Manag., 13, 460–465. [DOI] [PubMed] [Google Scholar]
- 47.Ziccardi L.M., Edgington A., Hentz K. et al. (2016) Environ. Toxicol. Chem., 35, 1667–1676. [DOI] [PubMed] [Google Scholar]
- 48.Kleinteich J., Seidensticker S., Marggrander N., and Zarfl C. (2018) Int. J. Environ. Res. Public Health, 15, 287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Mato Y. (2001) Environ. Sci. Technol., 35, 318–324. [DOI] [PubMed] [Google Scholar]
- 50.Andrady A.L. (2011) Mar. Pollut. Bull., 62, 1596–1605. [DOI] [PubMed] [Google Scholar]
- 51.Eriksen M., Lebreton L.C.M., Carson H.S. et al. (2014) PLoS ONE, 9, e111913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Reisser J., Shaw J., Wilcox C. et al. (2013) PLoS ONE, 8, e80466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Cózar A., Echevarría F., González-Gordillo J.I. et al. (2014) PNAS, 111, 10239–10244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Browne M.A. (2015) Sources and pathways of microplastics to habitats. In: Bergmann M., Gutow L., and Klages M. (eds), Marine anthropogenic litter, pp. 229–244. Springer, Cham. [Google Scholar]
- 55.Galloway T.G. (2015) Micro- and nano-plastics and human health. In: Bergmann M., Gutow L., and Klages M. (eds), Marine anthropogenic litter, pp. 343–366. Springer, Cham. [Google Scholar]
- 56.Alexander J., Barregard L., Bignami M. et al. (2016) EFSA Journal, 14, 4501. https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2016.4501 [accessed 21 May 2018]. [Google Scholar]
- 57.Thompson R.C., Olsen Y., Mitchell R.P. et al. (2004) Science, 304, 838. [DOI] [PubMed] [Google Scholar]
- 58.Parker L. (2018) National Geographic. https://www.nationalgeographic.com/magazine/2018/06/plastic-planet-waste-pollution-trash-crisis/ [accessed 21 May 2018].
- 59.Woodall L.C., Sanchez-Vidal A., Canals M. et al. (2014) R. Soc. Open Sci., 1, 140317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Lassen C., Hansen S.F., Magnusson K. et al. (2015) Microplastics: occurrence, effects and sources of releases to the environment in Denmark, p. 14. Ministry of Environment and Food in Denmark, Danish Environmental Protection Agency, Copenhagen. https://www2.mst.dk/Udgiv/publications/2015/10/978-87-93352-80-3.pdf [accessed 21 May 2018]. [Google Scholar]
- 61.Boucher J., and Friot D. (2017) Primary microplastics in the oceans: a global evaluation of sources. IUCN, Gland, Switzerland. https://portals.iucn.org/library/sites/library/files/documents/2017-002.pdf [accessed 21 May 2018]. [Google Scholar]
- 62.Jambeck J.R., Geyer R., Wilcox C. et al. (2015) Science, 347, 768–771. [DOI] [PubMed] [Google Scholar]
- 63.Kole P.J., Löhr A.J., Van Belleghem F.G.A.J., and Ragas A.M.J. (2017) Int. J. Environ. Res. Public Health, 14, 1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Tyree C., and Morrison D. (2017) Invisibles – the plastic inside us. https://orbmedia.org/stories/Invisibles_plastics/multimedia [accessed 21 May 2018].
- 65.Timmers V.R.J.H., and Achten P.A.J. (2016) Atmos. Environ., 134, 10–17. [Google Scholar]
- 66.Carr S.A., Liu J., and Tesoro A.G. (2016) Water Res., 91, 174–182. [DOI] [PubMed] [Google Scholar]
- 67.Murphy F., Ewins C., Carbonnier F., and Quinn B. (2016) Environ. Sci. Technol., 50, 5800–5808. [DOI] [PubMed] [Google Scholar]
- 68.Rochman C.M., Kross S.M., Armstrong J.B. et al. (2015) Environ. Sci. Technol., 49, 10759–10761. [DOI] [PubMed] [Google Scholar]
- 69.Talvitie J., Mikola A., Koistinen A., and Setala O. (2017) Water Res., 123, 401–407. [DOI] [PubMed] [Google Scholar]
- 70.Wright S.L., Rowe D., Thompson R.C., and Galloway T.S. (2013) Curr. Biol., 23, 1031–1033. [DOI] [PubMed] [Google Scholar]
- 71.Chae Y., and An Y.-J. (2017) Mar. Pollut. Bull., 124, 624–632. [DOI] [PubMed] [Google Scholar]
- 72.Wright S.L., Thompson R.C., and Galloway T.S. (2013) Environ. Pollut., 178, 483–492. [DOI] [PubMed] [Google Scholar]
- 73.Lönnstedt O.M., and Eklöv P. (2016) Science, 352, 1213–1216. [DOI] [PubMed] [Google Scholar]
- 74.Berg J. (2017) Science, 358, 1549. [DOI] [PubMed] [Google Scholar]
- 75.Cole M., Lindeque P., Fileman E. et al. (2013) Environ. Sci. Technol., 47, 6646–6655. [DOI] [PubMed] [Google Scholar]
- 76.Savoca M.S., Wohlfeil M.E., Ebeler S.E., and Nevitt G.A. (2016) Sci. Adv., 2, e1600395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Chiras D.D. (2004) Environmental science: creating a sustainable future. Jones & Bartlett Learning, Burlington, Massachusetts. [Google Scholar]
- 78.Reichert J., Schellenberg J., Schubert P., and Wilke T. (2018) Environ. Pollut., 237, 955–960 [DOI] [PubMed] [Google Scholar]
- 79.Davison P., and Asch R.G. (2011) Mar. Ecol. Prog. Ser., 432, 173–180. [Google Scholar]
- 80.Wieczorek A.M., Morrison L., Croot P.L. et al. (2018) Front. Mar. Sci., 5, 39. [Google Scholar]
- 81.Jamieson A.J., Malkocs T., Piertney S.B. et al. (2017) Nature Ecol. Evol., 1, 0051. [DOI] [PubMed] [Google Scholar]
- 82.Newcastle University Press Office (2017) Man-made fibres and plastic found in the deepest living organisms. https://www.ncl.ac.uk/press/articles/archive/2017/11/plasticocean/ [accessed 21 May 2018].
- 83.Hill M.K. (1997) Understanding environmental pollution, p. 257. Cambridge University Press, Cambridge. [Google Scholar]
- 84.Rodríguez A., Rodríguez B., and Nazaret Carrasco M. (2012) Mar. Pollut. Bull., 64, 2219–2223. [DOI] [PubMed] [Google Scholar]
- 85.Mathieu-Denoncourt J., Wallace S.J., de Solla S.R., and Langlois V.S. (2015) Gen. Compar. Endocrinol., 219, 74–88. [DOI] [PubMed] [Google Scholar]
- 86.Le Guern C. (2018) When the mermaids cry: the great plastic tide. http://plastic-pollution.org/ [accessed 22 May 2018].
- 87.Wilcox C., Van Sebille E., and Hardesty B.D. (2015) PNAS, 112, 11899–11904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.North E.J., and Halden R.U. (2013) Rev. Environ. Health, 28, 1–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Environmental and Occupational Health (2003) PubH 5103: exposure to enviromental hazards. Phthalates. http://enhs.umn.edu/current/5103/phth/toxicity.html [accessed 22 May 2018].
- 90.World Health Organization (2018) Nutrition. 3.5. Availability and consumption of fish. http://www.who.int/nutrition/topics/3_foodconsumption/en/index5.html [accessed 22 May 2018].
- 91.Nelms S.E., Galloway T.S., Godley B.J. et al. (2018) Environ. Pollut., 239, 999–1007. [DOI] [PubMed] [Google Scholar]
- 92.Lwanga E.H., Vega J.M., Quei V.K. et al. (2017) Sci. Rep., 7, 14071.29074893 [Google Scholar]
- 93.Kosuth M., Wattenberg E.V., Mason S.A. et al. (2017) Synthetic polymer contamination in global drinking water. https://orbmedia.org/stories/Invisibles_final_report [accessed 22 May 2018].
- 94.Wright S.L., and Kelly F.J. (2017) Environ. Sci. Technol., 51, 6634–6647. [DOI] [PubMed] [Google Scholar]
- 95.Li J., Yang D., Li L., Jabeen K., and Shi H. (2015) Environ. Pollut., 207, 190–195. [DOI] [PubMed] [Google Scholar]
- 96.Mathalon A., and Hill P. (2014) Mar. Pollut. Bull., 81, 69–79. [DOI] [PubMed] [Google Scholar]
- 97.Van Cauwenberghe L., and Janssen C.R. (2014) Environ. Pollut., 193, 65–70. [DOI] [PubMed] [Google Scholar]
- 98.Liebezeit G., and Liebezeit E. (2013) Food Addit. Contam. Part A, 30, 2136–2140. [DOI] [PubMed] [Google Scholar]
- 99.Liebezeit G., and Liebezeit E. (2014) Food Addit. Contam. Part A, 31, 1574–1578. [DOI] [PubMed] [Google Scholar]
- 100.Yang D., Shi H., Li L. et al. (2015) Environ. Sci. Technol., 49, 13622–13627. [DOI] [PubMed] [Google Scholar]
- 101.Dris R., Gasperi J., Rocher V. et al. (2015) Envir. Chem., 12, 592–599. [Google Scholar]
- 102.Dris R., Gasperi J., Saad M. et al. (2016) Mar. Pollut. Bull., 104, 290–293. [DOI] [PubMed] [Google Scholar]
- 103.Catarino A.I., Macchia V., Sanderson W.V. et al. (2018) Environ. Pollut., 237, 675–684. [DOI] [PubMed] [Google Scholar]
- 104.Zubris K.A.V., and Richards B.K. (2005) Environ. Pollut., 138, 201–211. [DOI] [PubMed] [Google Scholar]
- 105.Bouwmeester H., Hollman P.C.H., and Peters R.J.B. (2015) Environ. Sci. Technol., 49, 8932–8947. [DOI] [PubMed] [Google Scholar]
- 106.Warheit D.B., Hart G.A., Hesterberg T.W. et al. (2001) Crit. Rev. Toxicol., 31, 697–736. [DOI] [PubMed] [Google Scholar]
- 107.Pauly J.L., Stegmeier S.J., Allaart H.A. et al. (1998) Cancer Epidemol. Biomark. Prev., 7, 419–428. [PubMed] [Google Scholar]
- 108.Gregory M.R. (2009) Phil. Trans. R. Soc. B, 364, 2013–2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Barnes D.K.A., Galgani F., Thompson R.C., and Barlaz M. (2009) Phil. Trans. R. Soc. B, 364, 1985–1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Wikipedia (2018) Autotroph. https://en.wikipedia.org/wiki/Autotroph [accessed 22 May 2018].
- 111.Yokota K., Waterfield H., Hastings C. et al. (2017) Liminol. Oceanog. Lett., 2, 91–104. [Google Scholar]
- 112.Webb H.K., Arnott J., Crawford R.J., and Ivanova E.P. (2013) Polymers, 5, 1–18. [Google Scholar]
- 113.Raquez J.-M., Bourgeois A., Jacobs H. et al. (2011) J. Appl. Polym. Sci., 122, 489–496. [Google Scholar]
- 114.Zheng Y., Yanful E.K., and Bassi A.S. (2005) Crit. Rev. Biotechnol., 25, 243–250. [DOI] [PubMed] [Google Scholar]
- 115.Yamada-Onodera K., Mukumoto H., Katsuyaya Y. et al. (2001) Polym. Degrad. Stabil., 72, 323–327. [Google Scholar]
- 116.Zhang J., Wang X., Gong J., and Gu Z. (2004) J. Appl. Polym. Sci., 93, 1089–1096. [Google Scholar]
- 117.Xu S.-Y., Zhang H., He P.-J., and Shao L.-M. (2011) Environ. Technol., 32, 1269–1277. [DOI] [PubMed] [Google Scholar]
- 118.Svenson A., Sjöholm S., Allard A.-S., and Kaj L. (2009) Environ. Toxicol., 26, 233–239. [DOI] [PubMed] [Google Scholar]
- 119.Tsuchida D., Kajihara Y., Shimidzu N. et al. (2011) Waste Manag. Res., 29, 594–601. [DOI] [PubMed] [Google Scholar]
- 120.Mouat J., Lozano R.P., and Bateson H. (2010) Economic impacts of marine litter. http://www.kimointernational.org/wp/wp-content/uploads/2017/09/KIMO_Economic-Impacts-of-Marine-Litter.pdf [accessed 22 May 2018].
- 121.European Commission (2018) Environment. Our oceans, seas and coasts. Descriptor 10: marine litter. http://ec.europa.eu/environment/marine/good-environmental-status/descriptor-10/index_en.htm [accessed 22 May 2018].
- 122.Thompson R.C., Swan S.H., Moore C.J., and vom Saal F.S. (2009) Phil. Trans. R. Soc. B, 364, 1969–2166 [Google Scholar]
- 123.Thompson R.C., Moore C.J., vom Saal F.S., and Swan S.H. (2009) Phil. Trans. R. Soc. B, 364, 2153–2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Sherrington C., Darrah C., Hann A. et al. (2016) Study to support the development of measures to combat a range of marine litter sources. Report for European Commission DG Environment. http://mcc.jrc.ec.europa.eu/documents/201606243248.pdf [accessed 22 May 2018].
- 125.Beachwatch (2009) Beachwatch big weekend. https://www.mcsuk.org/downloads/pollution/beachwatch/Summary%20report_2009_e-mail.pdf [accessed 22 May 2018].
- 126.Van Sebille E., Wilcox C., Lebreton L. et al. (2015) Environ. Res. Lett., 10, 124006. [Google Scholar]
- 127.Dawson A.L., Kawaguchi S., King C.K. et al. (2018) Nature Comm., 9, 1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Goldstein M., and Goodwyn D. (2013) Peer J., 184, 2–17. [Google Scholar]
- 129.Jantz L., Morishige C., Bruland G., and Lepczyk C. (2013) Mar. Poll. Bull., 69, 97–104. [DOI] [PubMed] [Google Scholar]
- 130.Lusher A., McHugh M., and Thompson R. (2013) Mar. Poll. Bull., 67, 94–99. [DOI] [PubMed] [Google Scholar]
- 131.Zettler E., Mincer T., and Amaral-Zettler L. (2013) Environ. Sci. Technol., 47, 7137–7146. [DOI] [PubMed] [Google Scholar]
- 132.Harshvardhan K., and Jha B. (2013) Mar. Poll. Bull., 77, 100–106. [DOI] [PubMed] [Google Scholar]
- 133.Balasubramanian V., Natarajan K., Hemambika B. et al. (2010) Appl. Microbiol., 51, 205–211. [DOI] [PubMed] [Google Scholar]
- 134.Bakir A., Rowland S., and Thompson R. (2014) Environ. Pollut., 185, 16–23. [DOI] [PubMed] [Google Scholar]
- 135.Setälä O., Fleming-Lehtinen V., and Lehtiniemi M. (2014) Environ Pollut., 185, 77–83. [DOI] [PubMed] [Google Scholar]
- 136.Farrell P., and Nelson K. (2013) Environ. Pollut., 177, 1–3. [DOI] [PubMed] [Google Scholar]
- 137.Stephens B.B., Gurney K.R., Tans P.P. et al. , (2007) Science, 316, 1732–1735. [DOI] [PubMed] [Google Scholar]
- 138.Day R.H., Shaw D.G., and Ignell S.E. (1988) The quantitative distribution and characteristics of neuston plastic in the North Pacific Ocean, 1985–88. In: Shomura R.S., and Godfrey M.L. (eds), Proceedings of the Second International Conference on Marine Debris, Honolulu, Hawaii, 2–7 April 1989. https://swfsc.noaa.gov/publications/TM/SWFSC/NOAA-TM-NMFS-SWFSC-154_P247.PDF [accessed 23 May 2018]. [Google Scholar]
- 139.Lebreton L., Slat B., Ferrari F. et al. (2018) Sci. Rep., 8, 4666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Debroas D., Mone A., and Ter Halle A. (2017) Sci. Tot. Environ., 599–600, 1222–1232. [DOI] [PubMed] [Google Scholar]
- 141.Lavers J.F., and Bond A.L. (2017) PNAS, 114, 6052–6055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Wang A.M. (2017) The Washington Post. 16 May. https://www.washingtonpost.com/news/energy-environment/wp/2017/05/16/no-one-lives-on-this-remote-pacific-island-but-its-covered-in-38-million-pieces-of-our-trash/?noredirect=on&utm_term=.ae16a131b648 [accessed 23 May 2018].
- 143.Eriksen M., Mason S., Wilson S. et al. (2013) Mar. Pollut. Bull., 77, 177–182. [DOI] [PubMed] [Google Scholar]
- 144.Baldwin A.K., Corsi S.R., and Mason S.A. (2016) Environ. Sci. Technol., 50, 10377–10385. [DOI] [PubMed] [Google Scholar]
- 145.Ballent A., Corcoran P.L., Madden O. et al. (2016) Mar. Pollut. Bull., 110, 383–395. [DOI] [PubMed] [Google Scholar]
- 146.Small C., and Nicholls R.J. (2003) J. Coastal Res., 19, 584–599. [Google Scholar]
- 147.Schmidt C., Krauth T., and Wagner S. (2017) Environ. Sci. Technol., 51, 12246–12253. [DOI] [PubMed] [Google Scholar]
- 148.Schmidt C., Krauth T., and Wagner S. (2018) Environ. Sci. Technol., 52, 927–927. [DOI] [PubMed] [Google Scholar]
- 149.Bawden T. (2017) inews. 11 October. https://inews.co.uk/news/environment/95-ocean-plastic-delivered-just-10-rivers/ [accessed 24 May 2018].
- 150.Scheurer M., and Bigalke M. (2018) Environ. Sci. Technol., 52, 3591–3598. [DOI] [PubMed] [Google Scholar]
- 151.Huerta Lwanga E., Gertsen H., Gooren H. et al. (2016) Environ. Sci. Technol., 50, 2685–2691. [DOI] [PubMed] [Google Scholar]
- 152.Cao D., Wang X., Luo X. et al. (2017) IOP Conf. Ser. Earth Environ. Sci., 61, 012148. [Google Scholar]
- 153.Rodriguez-Seijo A., Lourenco J., Rocha-Santos T.A.P. et al. (2017) Environ. Pollut., 220, 495–503. [DOI] [PubMed] [Google Scholar]
- 154.Peeken I., Primpke S., Beyer B. et al. (2017) Nature Comm., 9, 1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Obbard R.W., Sadri S., Wong Y.Q. et al. (2014) Earth's Future, 2, 315–320. [Google Scholar]
- 156.European Commission (2018) Commission Regulation (EU) 2018/213 of 12 February 2018 on the use of bisphenol A in varnishes and coatings intended to come into contact with food and amending Regulation (EU) No 10/2011 as regards the use of that substance in plastic food contact materials. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.041.01.0006.01.ENG&toc=OJ:L:2018:041:TOC [accessed 25 May 2018].
- 157.Federal Register (2012) Indirect food additives: polymers. https://www.federalregister.gov/documents/2012/07/17/2012-17366/indirect-food-additives-polymers#p-3 [accessed 25 May 2018].
- 158.National Toxicology Programme (2018) Bisphenol A. https://ntp.niehs.nih.gov/results/areas/bpa/clarity_bpa/clarity-bpa-program.html [accessed 25 May 2018].
- 159.US Food and Drug Administration (2018) Statement from Stephen Ostroff M.D., Deputy Commissioner for Foods and Veterinary Medicine, on National Toxicology Program draft report on Bisphenol A. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm598100.htm [accessed 25 May 2018].
- 160.Abbasi J. (2018) JAMA, 319, 1644–1646. https://jamanetwork.com/journals/jama/article-abstract/2675909?redirect=true [accessed 2 May 2018].29562071 [Google Scholar]
- 161.Mesnage R., Phedonos A., Arno M. et al. (2017) Toxicol. Sci., 158, 431–443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Byrne D. (2011) Official journal of the European communities, L315/45-49. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999D0815&from=EN [accessed 25 May 2018].
- 163.The European Commision (1999) Official journal of the European communities, L44/2-6. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0143&from=EN [accessed 25 May 2018].
- 164.ChemicalWatch (2018) EU notifies WTO of proposed phthalates restriction in toys. https://chemicalwatch.com/65673/eu-notifies-wto-of-proposed-phthalates-restriction-in-toys [accessed 25 May 2018].
- 165.Eriksen B.E. (2017) Chem. Eng. News, 95, 15. [Google Scholar]
- 166.American Chemistry Council (2018) Phthalates. https://phthalates.americanchemistry.com/Industry/Toys/ [accessed 25 May 2018].
- 167.Bureau Veritas CPS (2017) CPSC publishes final rule on the ban of certain phthalates in toys and child care articles. http://www.bureauveritas.com/home/about-us/our-business/cps/whats-new/bulletins/cpsc+bans+certain+phthalates+in+toys+and+child+care+articles [accessed 25 May 2018].
- 168.Beat the Microbead (2018) Beat the microbead. http://www.beatthemicrobead.org/ [accessed 25 May 2018].
- 169.UNESCO (2017) Plastic pollution. http://www.unesco.org/new/en/unesco/events/prizes-and-celebrations/celebrations/international-days/world-oceans-day-2016/resources/plastic-pollution/ [accessed 25 May 2018].
- 170.Buxton L. (2018) Chemical Watch. 17 January. https://chemicalwatch.com/63198/eu-prepares-comprehensive-microplastics-restriction [accessed 25 May 2018].
- 171.European Commission (2018) EU plastics strategy. http://ec.europa.eu/environment/waste/plastic_waste.htm [accessed 25 May 2018].
- 172.European Commission (2018) Circular economy package. http://ec.europa.eu/environment/circular-economy/index_en.htm [accessed 25 May 2018].
- 173.European Commission (2015) Closing the loop – an EU action plan for the circular economy. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0614 [accessed 25 May 2018].
- 174.Carrington D. (2018) The Guardian. 9 January. https://www.theguardian.com/environment/2018/jan/09/plastic-microbeads-ban-enters-force-in-uk [accessed 25 May 2018].
- 175.Wikipedia (2018) Microbead. https://en.wikipedia.org/wiki/Microbead#States [accessed 25 May 2018].
- 176.US Congress (2015) Microbead-free waters act of 2015. H.R. 1321 (114th). https://www.govtrack.us/congress/bills/114/hr1321 [accessed 25 May 2018].
- 177.LEGO (2018) First sustainable LEGO® bricks will be launched in 2018. https://www.lego.com/en-us/aboutus/news-room/2018/march/pfp [accessed 25 May 2018].
- 178.Fort H. (2018) InYourArea. 18 January. https://www.inyourarea.co.uk/news/water-fountains-could-come-to-reading-as-part-of-drive-to-reduce-plastic/ [accessed 25 May 2018].
- 179.Ma Y. (2018) Sci. Prog., 101, 1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Transition Town Reading (2018) Refill Reading. http://www.transitionreading.org.uk/refillreading/ [accessed 25 May 2018].
- 181.Lyons K. (2018) The Guardian. 15 March. https://www.theguardian.com/world/2018/mar/15/can-we-fix-it-the-repair-cafes-waging-war-on-throwaway-culture [accessed 25 May 2018].
- 182.McGlade C., and Ekins P. (2015) Nature, 517, 187–190. [DOI] [PubMed] [Google Scholar]
- 183.Wikipedia (2018) Plastic pollution. https://en.wikipedia.org/wiki/Plastic_pollution [accessed 25 May 2018].
- 184.Watts J. (2018) The Guardian. 25 April. https://www.theguardian.com/world/2018/apr/25/nairobi-clean-up-highs-lows-kenyas-plastic-bag-ban [accessed 25 May 2018].
- 185.Garcia J.M., and Robertson M.L. (2017) Science, 358, 870–872. [DOI] [PubMed] [Google Scholar]
- 186.MacKerron C. (2012) As you sow. https://www.texasenvironment.org/wp-content/uploads/2015/04/UnfinishedBusiness_TheCaseforEPR_20120710.pdf [accessed 25 May 2018].
- 187.Rahimi A., and García J.M. (2017) Nat. Chem. Rev., 1, 0046. [Google Scholar]
- 188.BP (2017) BP Statistical Review of World Energy June 2017. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf [accessed 25 May 2018].
- 189.International Energy Agency (2017) Key world energy statistics. https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf [accessed 25 May 2018].
- 190.EPA (2015) Plastics. www3.epa.gov/epawaste/conserve/tools/warm/pdfs/Plastics.pdf [accessed 25 May 2018].
- 191.Aguado R., Olazar M., San José M.J., and Bilbao J. (2002) Energy Fuels, 16, 1429. [Google Scholar]
- 192.Jia X., Qin C., Friedberger T. et al. (2016) Sci. Adv., 2, e1501591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Jian-Bo Z., Watson E.M., Tang J., and Chen E.Y.-X., et al. (2018) Science, 360, 398–403. [DOI] [PubMed] [Google Scholar]
- 194.Webster B. (2018) The Times. 2 February. https://www.thetimes.co.uk/article/bury-plastic-in-landfill-until-science-progresses-and-it-can-be-mined-says-ian-boyd-65slvsl2v [accessed 25 May 2018].
- 195.Zhu J., Birgisson B., and Kringos N. (2014) Eur. Polym. J., 54, 18–38. [Google Scholar]
- 196.MacRebur® Ltd (2017) http://www.macrebur.com/ [accessed 25 May 2018].
- 197.Naskar M., Chaki T.K., and Reddy K.S. (2010) Thermochim. Acta, 509, 128–134. [Google Scholar]
- 198.Ellen MacArthur Foundation (2017) https://www.ellenmacarthurfoundation.org/ [accessed 25 May 2018].
- 199.Ellen MacArthur Foundation (2018) UK Plastics Pact launched by the Ellen MacArthur Foundation and WRAP. https://www.ellenmacarthurfoundation.org/news/uk-plastics-pact-launched-by-the-ellen-macarthur-foundation-and-wrap [accessed 25 May 2018].
- 200.European Commission (2018) A European strategy for plastics in a circular economy. http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1516265440535&uri=COM:2018:28:FIN [accessed 25 May 2018].
- 201.Wierckx N., Narancic T., Eberlein C. et al. (2018) Plastic biodegradation: challenges and opportunities. In: Steffan R. (ed.), Consequences of microbial interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation. Handbook of hydrocarbon and lipid microbiology, pp. 1–29. Springer, Cham, Switzerland. [Google Scholar]
- 202.Yoshida S., Hiraga K., Takehana T. et al. (2016) Science, 351, 1196–1199. [DOI] [PubMed] [Google Scholar]
- 203.Austin H.P., Allen M.D., Donohoe B.S. et al. (2018) PNAS, 115, E4350–E435. http://www.pnas.org/content/pnas/early/2018/04/16/1718804115.full.pdf [accessed 25 May 2018].29666242 [Google Scholar]
- 204.Ellen MacArthur Foundation (2017) Ellen MacArthur Foundation (2017) Oxo-degradable plastic packaging is not a solution to plastic pollution, and does not fit in a circular economy. https://www.nvc.nl/userfiles/files/Ellen_MacArthur_Foundation_oxo-statement-vF.pdf [accessed 28 June 2018].
- 205.CommonWealth (2018) Upgrade the plastic to save the environment! http://www.cweic.org/upgrade-plastic-save-environment/ [accessed 25 May 2018].
- 206.Oxo-degradable Plastics Association (2017) OPA responds to MacArthur report http://www.symphonyenvironmental.com/opa-responds-macarthur-report/ [accessed 25 May 2018].
- 207.European Commission (2018) Report on the impact of the use of oxo degradable plastic, including oxo-degradable plastic carrier bags, on the environment. http://ec.europa.eu/environment/circular-economy/pdf/oxo-plastics.pdf [accessed 26 May 2018].
- 208.European Commission (2018) A European strategy for plastics in a circular economy. http://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy.pdf [accessed 26 May 2018].
- 209.Oxo-degradable Plastics Association (2018) OPA responds to MacArthur report. http://www.biodeg.org/OPA%20responds%20to%20European%20Commission%20%20-%20%20%2019%20January%202018.pdf [accessed 26 May 2018].
- 210.European Bioplastics (2017) Bioplastics market data 2017. http://docs.european-bioplastics.org/publications/market_data/2017/Report_Bioplastics_Market_Data_2017.pdf [accessed 26 May 2018].
- 211.Selke S., Auras R., Nguyen T.A. et al. (2015) Environ. Sci. Technol., 49, 3769–3777. [DOI] [PubMed] [Google Scholar]
- 212.Allen D. (2017) Legal Reader. 24 August. https://www.legalreader.com/cassava-bags-green/ [accessed 26 May 2018].
- 213.Wikipedia (2018) Six pack rings. https://en.wikipedia.org/wiki/Six_pack_rings [accessed 26 May 2018].
- 214.Bolger M. (2017) Euractiv. 9 February. https://www.euractiv.com/section/climate-environment/opinion/will-bioplastics-repeat-the-biofuels-saga/ [accesssed 26 May 2018].
- 215.Wikipedia (2018) Garbage patch state. https://en.wikipedia.org/wiki/Garbage_Patch_State [accessed 26 May 2018].
- 216.Morrison S. (2017) Evening Standard. 15 August. https://www.standard.co.uk/news/london/plastic-whale-unveiled-near-tower-bridge-outlines-plastic-problem-polluting-oceans-a3612636.html [accessed 26 May 2018].
- 217.Phantasm 57 (2018) Blue Planet II plastic pollution awareness 2018 [video]. https://www.youtube.com/watch?v=xLx4fVsYdTI [accessed 26 May 2018].
- 218.The Holy Father, Francis (2015) Libreria Editrice Vaticana. 24 May. http://w2.vatican.va/content/francesco/en/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.html [accessed 26 May 2018].
- 219.Editorial (2015) Nature, 522, 391. [Google Scholar]
- 220.Jahnke A., Arp H.P.H., Escher B.I. et al. (2017) Environ. Sci. Technol. Lett., 4, 85–90. [Google Scholar]
- 221.Rhodes C.J. (2018) Sci. Prog., 101, 121–160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Ma Y. (2018) Sci. Prog., 101, 161–170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 223.Andrady A.L., and Neal M.A. (2009) Phil. Trans. R. Soc. B, 364, 1977–1984. [DOI] [PMC free article] [PubMed] [Google Scholar]