Abstract
To celebrate the centenary of Science Progress we offer a short survey of the progress made over the past one hundred years in the research and application of photoinduced charge transfer. After a brief historical overview and introduction to photoinduced charge transfer, we discuss developments in the theory and practice of photography, photovoltaics, photocatalysis, fluorescent probes and chemosensing.
Keywords: chemosensing, fluorescent probes, photocatalysis, photography, photoinduced charge transfer, photovoltaics, solar energy
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
5. References
- 1.Bohr N. (1913) Philos. Mag. Ser. 6, 26, 857–875. [Google Scholar]
- 2.Heisenberg W. (1925) Zeitschrift für Phys., 33, 879–893. [Google Scholar]
- 3.Schrödinger E. (1926) Ann. Phys., 384, 361–376. [Google Scholar]
- 4.Gernscheim E. (1982) The origins of photography. Thames & Hudson, London. [Google Scholar]
- 5.Becquerel E. (1839) Comptes Rendus, 9, 561–567. [Google Scholar]
- 6.Bae S.-H., Zhao H., Hsieh Y.-T., et al. (2016) Chem., 1, 197–219. [Google Scholar]
- 7.Kuznetsov A.M. (1997) Charge transfer in chemical reaction kinetics. Presses Polytechniques et Universitaires Romandes, Lausanne. [Google Scholar]
- 8.Ceroni P. and Balzani V. (2012) In: Ceroni P. (ed.) The exploration of supramolecular systems and nanostructures by photochemical techniques. Springer, Netherlands. [Google Scholar]
- 9.Suppan P. (1994) Chemistry and light. The Royal Society of Chemistry, Cambridge. [Google Scholar]
- 10.Schaaf L.J. (1992) Out of the shadows, Herschel, Talbot, and the invention of photography. Yale University Press, New Haven and London. [Google Scholar]
- 11.Gernsheim H. and Gernsheim A. (1986) Concise history of photography, 3rd ed. Dover Publications, New York. [Google Scholar]
- 12.Crawford W. (1979) The keepers of light: a history and working guide to early photographic processes. Morgan and Morgan, New York. [Google Scholar]
- 13.Cat J. (2013) Maxwell, Sutton, and the birth of colour photography, a binocular study. Palgrave Macmillan, New York. [Google Scholar]
- 14.Evans R.M. (1961) Sci. Am., 205, 118–128. [Google Scholar]
- 15.West W. and Gilman P.B. (1977) In: James T.H. (ed.), The theory of the photographic process, 4th ed. MacMillan Pub Co, New York. [Google Scholar]
- 16.Vogel H. (1873) Berichte der Dtsch. Chem. Gesellschaft, 6, 1302–1306. [Google Scholar]
- 17.Horder A. (1958) The Ilford manual of photography. Ilford Ltd, Essex. [Google Scholar]
- 18.Hurley F.J., Wright J. and Hurley F. (2001) South with ‘endurance’: antarctic photographs. Bloomsbury Publishing, London. [Google Scholar]
- 19.Mitchell D.J. (2010) Notes Rec. Roy. Soc. Lond., 64, 319–337. [Google Scholar]
- 20.Gurney R.W. and Mott N.F. (1938) Proc. Roy. Soc. Lond. Ser. A, 146, 151. [Google Scholar]
- 21.Bube R.H. (1992) Photoelectronic properties of semiconductors. Cambridge University Press, Cambridge. [Google Scholar]
- 22.Evans G.B., Ledger M.B. and Adam H.H. (2013) In: Evans R.C., Douglas P. and Burrows H.D. (ed.), Applied photochemistry, pp. 363–402. Springer, Berlin. [Google Scholar]
- 23.Tani T. (2011) Photographic science. Oxford University Press, Oxford. [Google Scholar]
- 24.James T.H. (1977) The theory of the photographic process, 4th ed. MacMillan Pub Co, New York. [Google Scholar]
- 25.Hatchard C.G. and Parker C.A. (1956) Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci., 235, 518LP–536. [Google Scholar]
- 26.Zigler D.F., Ding E.C., Jarocha L.E., et al. (2014) Photochem. Photobiol. Sci., 13, 1804–1811. [DOI] [PubMed] [Google Scholar]
- 27.Montalti M., Credi A., Prodi L. and Gandolfi M.T. (2006) Handbook of photochemistry. Taylor and Francis, Boca Raton, FL. [Google Scholar]
- 28.Herschel J.F.W. (1842) Phil. Trans. Roy. Soc., 132, 181–214. [Google Scholar]
- 29.Bockris J.O. (1981) In: Bockris J.O., Conway B.E., Yeager E. and White R.E. (eds), Comprehensive treatise of electrochemistry. Vol. 3 Electrochemical energy conversion and storage, pp. 505–526. Springer US, Boston, MA. [Google Scholar]
- 30.Tseng P., Lee J. and Friley P. (2005) Energy, 30, 2703–2720. [Google Scholar]
- 31.Darwent J.R., Douglas P., Harriman A., et al. (1982) Coord. Chem. Rev., 44, 83–126. [Google Scholar]
- 32.Sutin N. and Creutz C. (1980) Pure Appl. Chem., 52, 2717–2738. [Google Scholar]
- 33.Fujishima A. and Honda K. (1972) Nature, 238, 37–38. [DOI] [PubMed] [Google Scholar]
- 34.Nosaka Y., Nosaka A.Y., Jenks W.S., et al. (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. [Google Scholar]
- 35.Fujishima A., Zhang X. and Tryk D.A. (2008) Surf. Sci. Rep., 63, 515–582. [Google Scholar]
- 36.Hagfeldt A., Boschloo G., Sun L., et al. (2010) Chem. Rev., 110, 6595–6663. [DOI] [PubMed] [Google Scholar]
- 37.Grätzel M. (2003) J. Photochem. Photobiol. C Photochem. Rev., 4, 145–153. [Google Scholar]
- 38.O'Regan B. and Grätzel M. (1991) Nature, 353, 737–740. [Google Scholar]
- 39.Mathew S., Yella A., Gao P., et al. (2014) Nat. Chem., 6, 242–247. [DOI] [PubMed] [Google Scholar]
- 40.Kakiage K., Aoyama Y., Yano T., et al. (2015) Chem. Commun., 51, 15894–15897. [DOI] [PubMed] [Google Scholar]
- 41.Holliman P.J., Mohsen M., Connell A., et al. (2012) J. Mater. Chem., 22, 13318–13327. [Google Scholar]
- 42.Connell A., Holliman P.J., Jones E.W., et al. (2015) J. Mater. Chem. A, 3, 2883–2894. [Google Scholar]
- 43.Connell A., Holliman P.J., Davies M.L., et al. (2014) J. Mater. Chem. A, 2, 4055. [Google Scholar]
- 44.Abdalhadi S.M., Connell A., Zhang X., et al. (2016) J. Mater. Chem. A, 4, 15655–15661. [Google Scholar]
- 45.Ito S., Zakeeruddin S.M., Humphry-Baker R., et al. (2006) Adv. Mater., 18, 1202–1205. [Google Scholar]
- 46.Hara K., Wang Z.-S., Sato T., et al. (2005) J. Phys. Chem. B, 109, 15476–15482. [DOI] [PubMed] [Google Scholar]
- 47.Yum J.-H., Jang S., Humphry-Baker R., et al. (2008) Langmuir, 24, 5636–5640. [DOI] [PubMed] [Google Scholar]
- 48.Holliman P.J., Al-Salihi K.J., Connell A., et al. (2014) RSC Adv., 4, 2515–2522. [Google Scholar]
- 49.Davies M.L., Watson T.M., Holliman P.J., et al. (2014) Chem. Commun. (Camb.), 50, 12512–12514. [DOI] [PubMed] [Google Scholar]
- 50.Yella A., Lee H.-W., Tsao H.N., et al. (2011) Science, 334, 629–634. [DOI] [PubMed] [Google Scholar]
- 51.Kojima A., Teshima K., Shirai Y. and Miyasaka T. (2009) J. Am. Chem. Soc., 131, 6050–6051. [DOI] [PubMed] [Google Scholar]
- 52.Lee M.M., Teuscher J., Miyasaka T., et al. (2012) Science, 338, 643–647. [DOI] [PubMed] [Google Scholar]
- 53.National Renewable Energy Laboratory (NREL) (n.d.) National Renewable Energy Laboratory (NREL) home page. http://www.nrel.gov/ [accessed 28 February 2017].
- 54.Carnie M.J., Charbonneau C., Davies M.L., et al. (2013) Chem. Commun., 49, 7893–7895. [DOI] [PubMed] [Google Scholar]
- 55.Kim H.-S., Im S.H. and Park N.-G. (2014) J. Phys. Chem. C, 118, 5615–5625. [Google Scholar]
- 56.Carnie M.J., Charbonneau C., Davies M.L., et al. (2014) J. Mater. Chem. A, 2, 17077–17084. [Google Scholar]
- 57.Aristidou N., Sanchez-Molina I., Chotchuangchutchaval T., et al. (2015) Angew. Chemie - Int. Ed., 54, 8208–8212. [DOI] [PubMed] [Google Scholar]
- 58.Saliba M., Matsui T., Seo J.-Y., et al. (2016) Energy Environ. Sci., 9, 1853–2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Noh J.H., Im S.H., Heo J.H., et al. (2013) Nano Lett., 13, 1764–1769. [DOI] [PubMed] [Google Scholar]
- 60.Davies M.L., Carnie M., Holliman P.J., et al. (2014) Mater. Res. Innov., 18, 482–485. [Google Scholar]
- 61.Tang C.W. (1986) Appl. Phys. Lett., 48, 183–185. [Google Scholar]
- 62.Li S., Ye L., Zhao W., et al. (2016) Adv. Mater., 28, 9423–9429. [DOI] [PubMed] [Google Scholar]
- 63.Baran D., Ashraf R.S., Hanifi D.A., et al. (2017) Nat. Mater., 16, 363–369. [DOI] [PubMed] [Google Scholar]
- 64.Ardani K. and Margolis R. (2011) 2010 Energy efficiency and renewable energy, NREL report, pp. 1–136.
- 65.Dimitrov S.D. and Durrant J.R. (2014) Chem. Mater., 26, 616–630. [Google Scholar]
- 66.Stokes G.G. (1852) Philos. Trans. Roy. Soc. Lond., 142, 463–562. [Google Scholar]
- 67.Evans R.C. and Douglas P. (2013) In: Evans R.C., Douglas P. and Burrows H.D. (eds), Applied photochemistry, pp. 403–434. Springer Netherlands, Dordrecht. [Google Scholar]
- 68.Chauhan V.M., Giuntini F. and Aylott J.W. (2016) Sens. Bio-Sensing Res., 8, 36–42. [Google Scholar]
- 69.Demas J.N. and DeGraff B.A. (1997) J. Chem. Educ., 74, 690. [Google Scholar]
- 70.Akhavan J. (2004) The chemistry of explosives, 2nd ed. The Royal Society of Chemistry, Cambridge, UK. [Google Scholar]
- 71.McQuade D.T., Pullen A.E. and Swager T.M. (2000) Chem. Rev., 100, 2537–2574. [DOI] [PubMed] [Google Scholar]
- 72.Thomas S.W., Joly G.D. and Swager T.M. (2007) Chem. Rev., 107, 1339–1386. [DOI] [PubMed] [Google Scholar]
- 73.Neves T., Marques L., Martelo L. and Burrows H.D. (2014) Proc. IEEE Sensors, 1866, 1415–1418. [Google Scholar]
- 74.Czarnik A.W. (1994) Acc. Chem. Res., 27, 302–308. [Google Scholar]
- 75.Callan J.F., de Silva A.P. and Magri D.C. (2005) Tetrahedron, 61, 8551–8588. [Google Scholar]
- 76.Kovac J.D. (1998) J. Chem. Educ., 75, 545. [Google Scholar]
- 77.Chambon S., Rivaton A., Gardette J.-L., et al. (2007) J. Polym. Sci. Part A Polym. Chem., 45, 317–331. [Google Scholar]
- 78.Friend R.H., Gymer R.W., Holmes A.B., et al. (1999) Nature, 397, 121–128. [Google Scholar]
- 79.Smith M.B. and Michl J. (2010) Chem. Rev., 110, 6891–6936. [DOI] [PubMed] [Google Scholar]
- 80.Congreve D.N., Lee J., Thompson N.J., et al. (2013) Science, 340, 334–337. [DOI] [PubMed] [Google Scholar]
- 81.Ehrler B., Walker B.J., Böhm M.L., et al. (2012) Nat. Commun., 3, 1019. [DOI] [PubMed] [Google Scholar]