Abstract
Antibodies (Abs) are emerging as an important class of therapeutic agents for the treatment of various human diseases, often conjugated to drugs or toxic substances. In recent years, the incidence of cancer and infectious diseases has increased dramatically, making it imperative to discover new effective therapeutic molecules. Among these, small peptides are arousing great interest. Synthetic peptides, representative of variable and constant region fragments of Abs, were proved to exert in vitro, ex vivo and/or in vivo anti-microbial, anti-viral, anti-tumour and/or immunomodulatory activities, mediated by different mechanisms of action and regardless of the specificity and isotype of the Ab. Some of these synthetic peptides possess the ability to spontaneously and reversibly self-assemble in an organised network of fibril-like structure. Ab fragments may represent a novel model of targeted anti-infective and anti-tumour auto-delivering drugs.
Keywords: antibodies, anti-infective peptides, anti-tumour pepetides, immunomodulatory peptides
Full Text
The Full Text of this article is available as a PDF (5.7 MB).
References
- 1.Delves P.J., and Roitt I.M. (2000) The immune system. First of two parts. N. Engl. J. Med., 343, 37–49. [DOI] [PubMed] [Google Scholar]
- 2.Torres M., and Casadevall A. (2008) The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol., 29, 91–97. [DOI] [PubMed] [Google Scholar]
- 3.von Behring E., and Kitasato S. (1890) Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch. Med. Wochenschr., 16, 1113–1114. [PubMed] [Google Scholar]
- 4.Lindenmann J. (1984) Origin of the terms ‘antibody’ and ‘antigen’. Scand. J. Immunol., 19, 281–285. [DOI] [PubMed] [Google Scholar]
- 5.Mahendra A., Sharma M., Rao D.N., Peyron I., Planchais C., Dimitrov J.D., Kaveri S.V., and Lacroix-Desmazes S. (2013) Antibody-mediated catalysis: induction and therapeutic relevance. Autoimmun. Rev., 12, 648–652. [DOI] [PubMed] [Google Scholar]
- 6.Polonelli L., Conti S., Gerloni M., Magliani W., Castagnola M., Morace G., and Chezzi C. (1991) ‘Antibiobodies': antibiotic-like anti-idiotypic antibodies. J. Med. Vet. Mycol., 29, 235–242. [DOI] [PubMed] [Google Scholar]
- 7.Carter P.J. (2006) Potent antibody therapeutics by design. Nat. Rev. Immunol., 6, 343–357. [DOI] [PubMed] [Google Scholar]
- 8.Li J., and Zhu Z. (2010) Research and development of next generation of antibody-based therapeutics. Acta Pharmacol. Sin., 31, 1198–1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bellou S., Pentheroudakis G., Murphy C., and Fotsis T. (2013) Anti-angiogenesis in cancer therapy: Hercules and hydra. Cancer Lett., 338, 219–228. [DOI] [PubMed] [Google Scholar]
- 10.Shah P.S., and Kaufman D.A. (2009) Antistaphylococcal immunoglobulins to prevent staphylococcal infection in very low birth weight infants. Cochrane Database Syst. Rev., CD006449. [DOI] [PubMed] [Google Scholar]
- 11.Nagy E., Giefing C., and von Gabain A. (2008) Anti-infective antibodies: a novel tool to prevent and treat nosocomial diseases. Expert Rev. Anti. Infect. Ther., 6, 21–30. [DOI] [PubMed] [Google Scholar]
- 12.Dadachova E., and Casadevall A. (2008) Host and microbial cells as targets for armed antibodies in the treatment of infectious diseases. Curr. Opin. Investig. Drugs, 9, 184–188. [PubMed] [Google Scholar]
- 13.Sassoon I., and Blanc V. (2013) Antibody-drug conjugate (ADC) clinical pipeline: a review. Methods Mol. Biol., 1045, 1–27. [DOI] [PubMed] [Google Scholar]
- 14.Lianos G.D., Vlachos K., Zoras O., Katsios C., Cho W.C., and Roukos D.H. (2014) Potential of antibody-drug conjugates and novel therapeutics in breast cancer management. Onco, Targets Ther, 7, 491–500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Drake C.G. (2012) Combination immunotherapy approaches. Ann. Oncol., 23 Suppl 8, viii41–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Najjar V.A., and Nishioka K. (1970) “Tuftsin”: a natural phagocytosis stimulating peptide. Nature, 228, 672–673. [DOI] [PubMed] [Google Scholar]
- 17.Veretennikova N.I., Chipens G.I., Nikiforovich G.V., and Betinsh Y.R. (1981) Rigin, another phagocytosis-stimulating tetrapeptide isolated from human IgG. Confirmations of a hypothesis. Int. J. Pept. Protein Res., 17, 430–435. [DOI] [PubMed] [Google Scholar]
- 18.Morgan E.L., Hugli T.E., and Weigle W.O. (1982) Isolation and identification of a biologically active peptide derived from the CH3 domain of human IgG1. Proc. Natl. Acad. Sci. USA, 79, 5388–5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Mitin Y.V., Navolotskaya E.V., Vasilenko R.N., Abramov V.M., and Zav'Yalov V.P. (1993) Synthesis and properties of the peptide corresponding to the ACTH-like sequence of human immunoglobulin G1. Int. J. Pept. Protein Res., 41, 517–521. [DOI] [PubMed] [Google Scholar]
- 20.Zav'yalov V.P., Zaitseva O.R., Navolotskaya E.V., Abramov V.M., Volodina E., and Mitin Y. V. (1996) Receptor-binding properties of the peptides corresponding to the beta-endorphin-like sequence of human immunoglobulin G. Immunol. Lett., 49, 21–26. [DOI] [PubMed] [Google Scholar]
- 21.Jarrin A., Andrieux A., Chapel A., Buchou T., and Marguerie G. (1994) A synthetic peptide with anti-platelet activity derived from a CDR of an anti-GPIIb-IIIa antibody. FEBS Lett., 354, 169–172. [DOI] [PubMed] [Google Scholar]
- 22.Bourgeois C., Bour J.B., Aho L.S., and Pothier P. (1998) Prophylactic administration of a complementarity-determining region derived from a neutralising monoclonal antibody is effective against respiratory syncytial virus infection in BALB/c mice. J. Virol., 72, 807–810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Monnet C., Laune D., Laroche-Traineau J., Biard-Piechaczyk M., Briant L., Bes C., Pugniere M., Mani J.C., Pau B., Cerutti M., Devauchelle G., Devaux C., Granier C., and Chardes T. (1999) Synthetic peptides derived from the variable regions of an anti-CD4 monoclonal antibody bind to CD4 and inhibit HIV-1 promoter activation in virus-infected cells. J. Biol. Chem., 274, 3789–3796. [DOI] [PubMed] [Google Scholar]
- 24.Park B.W., Zhang H.T., Wu C., Berezov A., Zhang X., Dua R., Wang Q., Kao G., O'Rourke D.M., Greene M.I., and Murali R. (2000) Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo. Nat. Biotechnol., 18, 194–198. [DOI] [PubMed] [Google Scholar]
- 25.Moskal J.R., Kuo A.G., Weiss C., Wood P.L., O'Connor Hanson A., Kelso S., Harris R.B., and Disterhoft J.F. (2005) GLYX-13: a monoclonal antibody-derived peptide that acts as an N-methyl-D-aspartate receptor modulator. Neuropharmacology, 49, 1077–1087. [DOI] [PubMed] [Google Scholar]
- 26.Heap C.J., Wang Y., Pinheiro T.J., Reading S.A., Jennings K.R., and Dimmock N.J. (2005) Analysis of a 17-amino acid residue, virus-neutralising microantibody. J. Gen. Virol., 86, 1791–1800. [DOI] [PubMed] [Google Scholar]
- 27.Dorfman T., Moore M.J., Guth A.C., Choe H., and Farzan M. (2006) A tyrosine-sulfated peptide derived from the heavy-chain CDR3 region of an HIV-1-neutralising antibody binds gp120 and inhibits HIV-1 infection. J. Biol. Chem., 281, 28529–28535. [DOI] [PubMed] [Google Scholar]
- 28.Qiu X.Q., Wang H., Cai B., Wang L.L., and Yue S.T. (2007) Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumour targeting. Nat. Biotechnol., 25, 921–929. [DOI] [PubMed] [Google Scholar]
- 29.Mozes E., Sela U., and Sharabi A. (2008) A novel synthetic peptide for the specific treatment of lupus: clinical effects and mechanism of action. Isr. Med. Assoc. J., 10, 40–42. [PubMed] [Google Scholar]
- 30.Okarvi S.M., and Jammaz I.A. (2009) Design, synthesis, radiolabeling and in vitro and in vivo characterization of tumour-antigen- and antibody-derived peptides for the detection of breast cancer. Anticancer Res., 29, 1399–1409. [PubMed] [Google Scholar]
- 31.Jerne N.K. (1974) Towards a network theory of the immune system. Ann. Immunol. (Paris), 125C, 373–389. [PubMed] [Google Scholar]
- 32.Magliani W., Conti S., Travassos L.R., and Polonelli L. (2008) From yeast killer toxins to antibiobodies and beyond. FEMS Microbiol. Lett., 288, 1–8. [DOI] [PubMed] [Google Scholar]
- 33.Polonelli L., Magliani W., Conti S., Bracci L., Lozzi L., Neri P., Adriani D., De Bernardis F., and Cassone A. (2003) Therapeutic activity of an engineered synthetic killer antiidiotypic antibody fragment against experimental mucosal and systemic candidiasis. Infect. Immun., 71, 6205–6212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Manfredi M., McCullough M.J., Conti S., Polonelli L., Vescovi P., Al-Karaawi Z.M., and Porter S.R. (2005) In vitro activity of a monoclonal killer anti-idiotypic antibody and a synthetic killer peptide against oral isolates of Candida spp. differently susceptible to conventional antifungals. Oral Microbiol. Immunol., 20, 226–232. [DOI] [PubMed] [Google Scholar]
- 35.Cenci E., Bistoni F., Mencacci A., Perito S., Magliani W., Conti S., Polonelli L., and Vecchiarelli A. (2004) A synthetic peptide as a novel anticryptococcal agent. Cell. Microbiol., 6, 953–961. [DOI] [PubMed] [Google Scholar]
- 36.Travassos L.R., Silva L.S., Rodrigues E.G., Conti S., Salati A., Magliani W., and Polonelli L. (2004) Therapeutic activity of a killer peptide against experimental paracoccidioidomycosis. J. Antimicrob. Chemother., 54, 956–958. [DOI] [PubMed] [Google Scholar]
- 37.Conti S., Magliani W., Giovati L., Libri I., Maffei D.L., Salati A., and Polonelli L. (2008) Screening of a Saccharomyces cerevisiae nonessential gene deletion collection for altered susceptibility to a killer peptide. New Microbiol., 31, 143–145. [PubMed] [Google Scholar]
- 38.Cafarchia C., Immediato D., Paola G.D., Magliani W., Ciociola T., Conti S., Otranto D., and Polonelli L. (2014) In vitro and in vivo activity of a killer peptide against Malassezia pachydermatis causing otitis in dogs. Med. Mycol., 52, 350–355. [DOI] [PubMed] [Google Scholar]
- 39.Donini M., Lico C., Baschieri S., Conti S., Magliani W., Polonelli L., and Benvenuto E. (2005) Production of an engineered killer peptide in Nicotiana benthamiana by using a potato virus X expression system. Appl. Environ. Microbiol., 71, 6360–6367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Savoia D., Scutera S., Raimondo S., Conti S., Magliani W., and Polonelli L. (2006) Activity of an engineered synthetic killer peptide on Leishmania major and Leishmania infantum promastigotes. Exp. Parasitol., 113, 186–192. [DOI] [PubMed] [Google Scholar]
- 41.Fiori P.L., Mattana A., Dessi D., Conti S., Magliani W., and Polonelli L. (2006) In vitro acanthamoebicidal activity of a killer monoclonal antibody and a synthetic peptide. J. Antimicrob. Chemother., 57, 891–898. [DOI] [PubMed] [Google Scholar]
- 42.Casoli C., Pilotti E., Perno C.F., Balestra E., Polverini E., Cassone A., Conti S., Magliani W., and Polonelli L. (2006) A killer mimotope with therapeutic activity against AIDS-related opportunistic micro-organisms inhibits ex-vivo HIV-1 replication. AIDS, 20, 975–980. [DOI] [PubMed] [Google Scholar]
- 43.Conti G., Magliani W., Conti S., Nencioni L., Sgarbanti R., Palamara A.T., and Polonelli L. (2008) Therapeutic activity of an anti-idiotypic antibody-derived killer peptide against influenza A virus experimental infection. Antimicrob. Agents Chemother., 52, 4331–4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Omaetxebarria M.J., Moragues M.D., Elguezabal N., Rodriguez-Alejandre A., Brena S., Schneider J., Polonelli L., and Ponton J. (2005) Antifungal and antitumour activities of a monoclonal antibody directed against a stress mannoprotein of Candida albicans. Curr. Mol. Med., 5, 393–401. [DOI] [PubMed] [Google Scholar]
- 45.Brena S., Omaetxebarria M.J., Elguezabal N., Cabezas J., Moragues M.D., and Ponton J. (2007) Fungicidal monoclonal antibody C7 binds to Candida albicans Als3. Infect. Immun., 75, 3680–3682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Polonelli L., Ponton J., Elguezabal N., Moragues M.D., Casoli C., Pilotti E., Ronzi P., Dobroff A.S., Rodrigues E.G., Juliano M.A., Maffei D.L., Magliani W., Conti S., and Travassos L.R. (2008) Antibody complementarity-determining regions (CDRs) can display differential antimicrobial, antiviral and antitumour activities. PLoS ONE, 3, e2371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Polonelli L., Ciociola T., Magliani W., Zanello P.P., D'Adda T., Galati S., De Bernardis F., Arancia S., Gabrielli E., Pericolini E., Vecchiarelli A., Arruda D.C., Pinto M.R., Travassos L.R., Pertinhez T.A., Spisni A., and Conti S. (2012) Peptides of the constant region of antibodies display fungicidal activity. PLoS ONE, 7, e34105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Arruda D.C., Santos L.C., Melo F.M., Pereira F.V., Figueiredo C.R., Matsuo A.L., Mortara R.A., Juliano M.A., Rodrigues E.G., Dobroff A.S., Polonelli L., and Travassos L.R. (2012) beta-Actin-binding complementarity-determining region 2 of variable heavy chain from monoclonal antibody C7 induces apoptosis in several human tumour cells and is protective against metastatic melanoma. J. Biol. Chem., 287, 14912–14922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Dobroff A.S., Rodrigues E.G., Juliano M.A., Friaca D.M., Nakayasu E.S., Almeida I.C., Mortara R.A., Jacysyn J.F., Amarante-Mendes G.P., Magliani W., Conti S., Polonelli L., and Travassos L.R. (2010) Differential Antitumour Effects of IgG and IgM Monoclonal Antibodies and Their Synthetic Complementarity-Determining Regions Directed to New Targets of B16F10-Nex2 Melanoma Cells. Transl. Oncol., 3, 204–217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Navolotskaya E.V. (2014) The second life of antibodies. Biochemistry (Mosc.), 79, 1–7. [DOI] [PubMed] [Google Scholar]
- 51.Cenci E., Pericolini E., Mencacci A., Conti S., Magliani W., Bistoni F., Polonelli L., and Vecchiarelli A. (2006) Modulation of phenotype and function of dendritic cells by a therapeutic synthetic killer peptide. J. Leukoc. Biol., 79, 40–45. [DOI] [PubMed] [Google Scholar]
- 52.Gabrielli E., Pericolini E., Cenci E., Ortelli F., Magliani W., Ciociola T., Bistoni F., Conti S., Vecchiarelli A., and Polonelli L. (2009) Antibody complementarity-determining regions (CDRs): a bridge between adaptive and innate immunity. PLoS ONE, 4, e8187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Gabrielli E., Pericolini E., Cenci E., Monari C., Magliani W., Ciociola T., Conti S., Gatti R., Bistoni F., Polonelli L., and Vecchiarelli A. (2012) Antibody constant region peptides can display immunomodulatory activity through activation of the Dectin-1 signalling pathway. PLoS ONE, 7, e43972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Pertinhez T.A., Conti S., Ferrari E., Magliani W., Spisni A., and Polonelli L. (2009) Reversible self-assembly: a key feature for a new class of autodelivering therapeutic peptides. Mol. Pharm., 6, 1036–1039. [DOI] [PubMed] [Google Scholar]
- 55.Magliani W., Conti S., Ciociola T., Giovati L., Zanello P.P., Pertinhez T., Spisni A., and Polonelli L. (2011) Killer peptide: a novel paradigm of antimicrobial, antiviral and immunomodulatory auto-delivering drugs. Future Med. Chem., 3, 1209–1231. [DOI] [PubMed] [Google Scholar]
- 56.Magliani W., Conti S., Giovati L., Zanello P.P., Sperinde M., Ciociola T., and Polonelli L. (2012) Antibody Peptide based antifungal immunotherapy. Front. Microbiol., 3, 190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Magliani W., Conti S., Giovati L., Maffei D.L., and Polonelli L. (2008) Anti-beta-glucan-like immunoprotective candidacidal antiidiotypic antibodies. Front. Biosci., 13, 6920–6937. [DOI] [PubMed] [Google Scholar]
- 58.Cutuli M., Cristiani S., Lipton J.M., and Catania A. (2000) Antimicrobial effects of alpha-MSH peptides. J. Leukoc. Biol., 67, 233–239. [DOI] [PubMed] [Google Scholar]
- 59.Sforca M.L., Machado A., Figueredo R.C., Oyama S. Jr., Silva F.D., Miranda A., Daffre S., Miranda M.T., Spisni A., and Pertinhez T.A. (2005) The micelle-bound structure of an antimicrobial peptide derived from the alpha-chain of bovine hemoglobin isolated from the tick Boophilus microplus. Biochemistry (Mosc.), 44, 6440–6451. [DOI] [PubMed] [Google Scholar]
- 60.Magliani W., Conti S., Cunha R.L., Travassos L.R., and Polonelli L. (2009) Antibodies as crypts of antiinfective and antitumour peptides. Curr. Med. Chem., 16, 2305–2323. [DOI] [PubMed] [Google Scholar]