Skip to main content
Science Progress logoLink to Science Progress
. 2012 Sep 1;95(3):255–282. doi: 10.3184/003685012X13420984463047

Overview of Current Additive Manufacturing Technologies and Selected Applications

Timothy J Horn 1,, Ola L A Harrysson 2
PMCID: PMC10365362  PMID: 23094325

Abstract

Three-dimensional printing or rapid prototyping are processes by which components are fabricated directly from computer models by selectively curing, depositing or consolidating materials in successive layers. These technologies have traditionally been limited to the fabrication of models suitable for product visualization but, over the past decade, have quickly developed into a new paradigm called additive manufacturing. We are now beginning to see additive manufacturing used for the fabrication of a range of functional end use components. In this review, we briefly discuss the evolution of additive manufacturing from its roots in accelerating product development to its proliferation into a variety of fields. Here, we focus on some of the key technologies that are advancing additive manufacturing and present some state of the art applications.

Keywords: additive manufacturing, rapid prototyping, 3D printing, solid freeform fabrication, direct digital manufacturing

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

References

  • 1.Wohlers T. (2011) Wohlers Report 2011: Additive manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report.
  • 2.Cormier D., Harrysson O. L., and Mahale T. (2003) J. Chin. Inst. Industr. Eng., 20, 193–201. [Google Scholar]
  • 3.Jacobs P. F. (1992) Rapid prototyping and manufacturing: Fundamentals of sterolithography. SME [Google Scholar]
  • 4.Gibson I., Rosen D. W., and Stucker B. (2010) Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing. Springer, New York [Google Scholar]
  • 5.Wohlers T. (2005) Wohlers Report 2005: Additive manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report.
  • 6.Singh R. (2010) Adv. Mater.Res., 86, 342–349. [Google Scholar]
  • 7.Dimitrov D., Schreve K., and de Beer N. (2006) Rapid Prototyp. J., 12, 136–147. [Google Scholar]
  • 8.Goodridge R. D., Tuck C. J., and Hague R. J. (2012) Progr. Mater. Sci., 57, 229–267. [Google Scholar]
  • 9.Vandenbroucke B., and Kruth J.P. (2007) Rapid Prototyp. J., 13, 196–203. [Google Scholar]
  • 10.Ram G. D., Robinson C., Yang Y., and Stucker B. E. (2007) Rapid Prototyp. J., 13(4), 226–235. [Google Scholar]
  • 11.Wu X. (2006) Intermetallics, 14, 1114–1122. [Google Scholar]
  • 12.Cormier D., Harrysson O., Mahale T., and West H. (2007) Res. Lett. Mater. Sci., 2007, 1–4. [Google Scholar]
  • 13.Biamino S., Penna A., Ackelid U., Sabbadini S., Tassa O., Fino P., and Gennaro P. (2010) Intermetallics, 19, 776–781. [Google Scholar]
  • 14.Williams C., Cochran J.K., and Rosen D.W. (2011) Int. J. Adv. Manufact. Techn., 53, 231–239. [Google Scholar]
  • 15.Cansizoglu O., Harrysson O., Cormier D., West H., and Mahale T. (2008) Mater.Sci. Eng. A, 492(1-2), 468–474. [Google Scholar]
  • 16.Cansizoglu O., Harrysson O., West H., Cormier D., and Mahale T. (2008) Rapid Prototyp. J., 14, 114–122. [Google Scholar]
  • 17.Levy G.N., Schindel R., and Kruth J.P. (2003) CIRP Annals-Manufact. Techn., 52, 589–609. [Google Scholar]
  • 18.Wong M., Tsopanos S., Sutcliffe C.J., and Owen I. (2005) Rapid Prototyp. J., 13, 291–297. [Google Scholar]
  • 19.Frigola P., Agustsson R., Boucher S., Murokh A., Rosenzweig J., Travish G., Faillace L., Cormier D., and Mahale T. (2008) Proc. 11th European Particle Accelerator Conf., 751–753. [Google Scholar]
  • 20.Gibson I., Cheung L.K., Chow S.L., Cheung W.L., Beh S.L., Salvani M., and Lee S.H. (2006) Rapid Prototyp. J., 12, 53–58. [Google Scholar]
  • 21.Christensen A. M., Humphries S. M., Goh K. Y. C., and Swift D. (2004) Child's Nervous System, 20, 547–553. [DOI] [PubMed] [Google Scholar]
  • 22.Doyle B.J., Morris L.G., Callanan A., Kelly P., Vorp D.A., and McGlouglin T.M. (2008) J. Biomed. Eng., 130, 034501. [DOI] [PubMed] [Google Scholar]
  • 23.Reeves P., Tucker C., Hauge R., (2011). In: Fogliatto F. S., and Da Silveira G. J. (eds), Mass customization, pp. 275–289. Springer, London. [Google Scholar]
  • 24.Harrysson O.L.A., Cansizoglu O., Marcellin-Little D.J., Cormier D.R., and West H.A., (2007) Mater. Sci. Eng., 28∼, 366–373 [Google Scholar]
  • 25.Haslauer C.M., Springer J.C., Harrysson O.L.A., Loboa E., Moteiro-Riviere N.A., and Marcellin-Little D.J. (2010) Med. Eng.Phys., 32, 645–652. [DOI] [PubMed] [Google Scholar]
  • 26.Palmquist A., Snis A., Emanuelsson L., Browne M., and Thomsen P. (2011) J. Biomater. Appl., E-published ahead of Print; [DOI] [PubMed] [Google Scholar]
  • 27.Melchels F.P.W., Domingos M.A.N., Klein T.J., Malda J., Bartolo P.J., and Hutmacher D.M. (2012) Additive Manufacturing of Tissues and Organs. Progress in Polymer Science. Available Online 8 December 2011 http://www.sciencedirect.com/science/article/pii/S0079670011001328)
  • 28.Atala A. (2011) Br. Med. Bull., 97, 81–104. [DOI] [PubMed] [Google Scholar]
  • 29.Nakamura M., Kobayashi A., Takagi F., Watanabe A., Hiruma Y., Ohuchi K., Iwasaki Y., Horie M., Morita I., and Takatani S. (2005) Tiss. Eng., 11, 1658–1666. [DOI] [PubMed] [Google Scholar]
  • 30.Xu T., Olson J., Zhao W., Atala A., Zhu J-M., and Yoo J.J. (2008) J. Manufact. Sci. Eng., 130, 1–7. [Google Scholar]
  • 31.Visconti R. P., Kasyanov V., Gentile C., Zhang J., Markwald R.R., and Mironov V. (2010) Expert Opin. Biol. Ther., 10, 409–420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Hon K.K.B, Li L., and Hutchings I.M. (2008) CIRP Annals-Manufact. Techn., 57, 601–620. [Google Scholar]
  • 33.2011, Print me a Stradivarius, The Economist, 10 February 2011 [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES