Abstract
Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production – some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals.
Keywords: microalgae, cyanobacteria, antibiotics, anticancer activity, antiviral activity, secondary metabolites, value added compounds, lipids, biofuels, bioremediation
Full Text
The Full Text of this article is available as a PDF (8.5 MB).
12. References
- 1.Norton T.A., Melkonian M., and Andersen R.A. (1996) Algal biodiversity. Phycologia, 35, 308–326. [Google Scholar]
- 2.Sakshaug E., Bricaud A., Dandonneau Y., Falkowski P., Kiefer D., Legendre L., Morel A., Parlsow J., and Takahashi M. (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J. Plankton Res., 19, 1637–1670. [Google Scholar]
- 3.Falkowski P.G. (2002) The ocean′s invisible forest. Scient. Am., 287, 54–61. [DOI] [PubMed] [Google Scholar]
- 4.Richmond A. (2004) Handbook of microalgal cultures, biotechnology and applied Phycology. Blackwell, Iowa. [Google Scholar]
- 5.Encarnação T., Burrows H.D., Canelas A.C., and Campos M.G. (2012) Effect of N and P on the production of carotenoids and chlorophyll by the microalgae Nannochloropsis sp. J. Agric. Sci. Technol., 2. [Google Scholar]
- 6.Chisti Y. (2007) Biodiesel from microalgae. Biotech. Adv., 25, 294–206. [DOI] [PubMed] [Google Scholar]
- 7.Nisbet E.G., and Sleep N.H. (2001) The habitat and nature of early life. Nature, 409, 1083–1091. [DOI] [PubMed] [Google Scholar]
- 8.Payne J.L. et al. (2011) The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynth Res., 107, 37–57. [DOI] [PubMed] [Google Scholar]
- 9.Macías F.A., Galindo J.L.G., and Galindo J.C.G. (2007) Evolution and current status of ecological phytochemistry. Phytochemistry, 68, 2917–2936. [DOI] [PubMed] [Google Scholar]
- 10.Vishnivetskaya T.A. (2009) Viable cyanobacteria and green algae from the Permafrost darkness. In: Permafrost soils. Margesin Rosa Ed. Springer-Verlag, Berlin Heidelberg. [Google Scholar]
- 11.Beerling D.J. (2012) Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years? Phil. Trans. R. Soc., 367, 477–482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Rebolloso-Fuentes M.M., Navarro-Pérez A., García-Camacho F., Ramos-Miras J.J., and Guil-Guerrero J.L. (2001) J. Agric. Food Chem., 49, 2966–2972. [DOI] [PubMed] [Google Scholar]
- 13.de Man J.M. (1999) Principles of food chemistry. Aspen Publishing, New York. [Google Scholar]
- 14.Becker E.W. (1994) In: Baddiley J. et al. (eds), Microalgae: biotechnology and microbiology, pp. 178. Cambridge University Press. [Google Scholar]
- 15.Peña M.R. (2007) Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture locations. J. Appl. Phycol., 19, 647–655. [Google Scholar]
- 16.Zepka L.Q., Jacob-Lopes E., Goldbeck R., and Queiroz M.I. (2007) Production and biochemical profile of the microalgae Aphanothece microscopica Nägeli submitted to different drying conditions. Chem. Eng. Process., 47, 1305–1310. [Google Scholar]
- 17.Matsudo M.C., Bezerra R.P., Sato S., Perego P., Converti A., and Carvalho J.C.M. (2009) Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem. Eng. J., 43, 52–57. [Google Scholar]
- 18.Leema J.T.M., Kirubagaran R., Vinithkumar N.V., Dheenan P.S., and Karthikayulu S. (2010) High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresour. Technol., 101, 9221–9227. [DOI] [PubMed] [Google Scholar]
- 19.Sydney E.B., Sturm W., Carvalho J.C., Thomaz-Socclo V., Larroche C., Pandey A., and Soccol C.R. (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol., 101, 5892–5896. [DOI] [PubMed] [Google Scholar]
- 20.Xu F., Cai Z., Cong W., and Ouyang F. (2004) Growth and fatty acid composition of Nannochloropsis sp. Grown mixotrophically in fed-batch culture. Biotechnol. Lett., 26, 1319–1322. [DOI] [PubMed] [Google Scholar]
- 21.Rebolloso Fuentes M.M., Fernández G.G.A., Pérez J.A.S., and Guerrero J.L.G. (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem., 70, 345–353. [Google Scholar]
- 22.Madigan M.T., Martinko J.M., Stahl D.A., and Clark D.P. (2012) Biology of microorganisms, 13 edn. Benjamin Cummings Publishing, Guildford. [Google Scholar]
- 23.Falkowski P.G., and Raven J.A. (1997) Aquatic photosynthesis, p. 375. Blackwell Scientific Publishers, Oxford. [Google Scholar]
- 24.Singh S., Kate B., and Banerjee U.C. (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol., 25, 73–95. [DOI] [PubMed] [Google Scholar]
- 25.Florida Fish and Wildlife Conservation Commission (FWC) http://www.flickr.com/photos/myfwc/5884548128/.
- 26.Burja A.M., Banaigs B., Abou-Mansour E., Burgess J.G., and Wright P.C. (2001) Marine cyanobacteria-a prolific source of natural products. Tetrahedron, 57, 9347–9377. [Google Scholar]
- 27.Casarett, and Doull's (2008) In: Klaassen C.D. (ed.), Toxicology: the basic science of poisons, 7th edn. McGraw-Hill, New York. [Google Scholar]
- 28.Kobayabshi J., and Kubota T. (2007) Bioactive macrolides and polyketides from marine dinoflagellates of the Genus Amphidinium. J. Nat. Prod., 70, 451–460. [DOI] [PubMed] [Google Scholar]
- 29.Wiese M., D′Agostino P.M., Mihali T.K., Moffitt M.C., and Neilan B.A. (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar. Drugs, 8, 2185–2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Rao A.R. (2006) Antioxidant activity of Botryococcus braunii extract elucidated models. J. Agric. Food. Chem., 54, 4593–4599. [DOI] [PubMed] [Google Scholar]
- 31.Rickards R.W., Rothschild J.M., Willis A.C., Nola M.C., Kirk J., Kirk K., Saliba K.J., and Smith G.D. (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron, 55, 13513–13520. [Google Scholar]
- 32.Guzmán S., Gato A., Lamela M., Freire-Garabal M., and Calleja J.M. (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res., 17, 665–670. [DOI] [PubMed] [Google Scholar]
- 33.Laguna M.R., Villar R., Calleja J.M., and Cadavid I. (1993) Effects of Chlorella stigmatophora on the central nervous system. Planta Med., 59, 125–130. [DOI] [PubMed] [Google Scholar]
- 34.Hasui M., Matsuda M., Okutani K., and Shigeta S. (1995) antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. Bio. Macromol., 17, 293–297. [DOI] [PubMed] [Google Scholar]
- 35.Ohta S., Ono F., Shiomi Y., Nakao T., Aozasa O., Nagate T., Kitamura K., Yamaguchi S., Nishi M., and Miyata H. (1998) Anti-Herpes Simplex Virus substances produced by the marine green alga Dunaliella primolecta. J. Appl. Phycol., 10, 349–355. [Google Scholar]
- 36.Borowitzka M.A. (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol., 7, 3–15. [Google Scholar]
- 37.Villar R., Laguna M.R., Calleja J.M., and Cadavid I. (1992) Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta Med., 58, 405–409. [DOI] [PubMed] [Google Scholar]
- 38.Mo S., Krunic A., Santarsiero B.D., Franzblau S.G., and Orjala J. (2010) Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambígua. Phytochemistry, 71, 2116–2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Asthana R.K., Srivastava A., Singh A.P., Deepali, Singh S.P., Nath G., Srivastava R., and Srivastava B.S. (2006) Identification of an antimicrobial entity from the cyanobacterium Fischerella sp. isolated from bark of Azadirachta indica (Neem) tree. J. Appl. Phycol., 18, 33–39. [Google Scholar]
- 40.Negri A., Stirling D., Quilliam M., Blackburn S., Bolch C., Eaglesham G., Thomas K., Walter J., and Willis R. (2003) Three novel hydroxybenzoate saxitoxin analogues isolated from the dinoflagellate Gymnodinium catenatum. Chem. Res. Toxicol., 16, 1029–1033. [DOI] [PubMed] [Google Scholar]
- 41.Bhakuni D.S., and Rawat D.S. (2005) Bioactive marine natural products. Anamaya Publishers, New Delhi. [Google Scholar]
- 42.Kim M., Yim J.H., Kim S., Kim H.S., Lee W.G., Kim S.J., Kang P., and Lee C. (2012) In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res., 93, 253–259. [DOI] [PubMed] [Google Scholar]
- 43.Yim J.H., Kim S.J., Ahn S.H., Lee C.K., Rhie K.T., and Lee H.K. (2004) Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum Strain KG03. Mar. Biotechnol., 6, 17–25. [DOI] [PubMed] [Google Scholar]
- 44.Lorenz R.T., and Cysewski G.R. (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol., 18, 160–167. [DOI] [PubMed] [Google Scholar]
- 45.Laguna M.R., Villar R., Cadavid I., and Calleja J.M. (1993) Effects of extracts of Tetraselmis suecica and Isochrysis galbana on the central nervous system. Planta Med., 59, 207–214. [DOI] [PubMed] [Google Scholar]
- 46.Luesch H., Yoshida Y., Moore R.E., Paul V.J., and Corbett T.H. (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscule. J. Am. Chem. Soc., 123, 5418–5423. [DOI] [PubMed] [Google Scholar]
- 47.Nogle L.M., and Gerwick W.H. (2002) Somocystinamide A, a novel cytotoxic disulfide dimer from a Fijian marine cyanobacterial mixed assemblage. Org. Lett., 4, 1095–1098. [DOI] [PubMed] [Google Scholar]
- 48.Teruya T., Sasaki H., Fukazawa H., and Suenaga K. (2009) Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org. Lett., 11, 5062–5065. [DOI] [PubMed] [Google Scholar]
- 49.Huskens D., Férir G., Vermeire K., Kehr J., Balzarini J., Dittmann E., and Schols D. (2010) Microvirin, a novel alpha(1,2)-mannose-specific lectin isolated from Microcystis aeruginosa, has anti-HIV-1 activity comparable with that of Cyanovirin-N but a much higher safety profile. J. Biol. Chem., 285, 24845–24854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Zafrir E., and Carmeli S. (2010) Micropeptins from an Israeli fishpond water bloom of the cyanobacterium Microcystis sp. J. Nat. Prod., 73, 352–358. [DOI] [PubMed] [Google Scholar]
- 51.Patil V., Källqvist T., Olsen E., Vogt G., and Gislerød H.R. (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int., 15, 1–9. [Google Scholar]
- 52.Lukiw W.J., and Bazan N.G. (2012) Docosahexaenoic acid and the aging brain. J. Nutr., 138, 2510–2514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Volk R., and Furkert F.H. (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res, 161, 180–186. [DOI] [PubMed] [Google Scholar]
- 54.Jaki B., Orjala J., and Sticher O. (1999) A Novel Extracellular Diterpenoid with Antibacterial Activity from the Cyanobacterium Nostoc commune. J. Nat. Prod., 62, 502–503. [DOI] [PubMed] [Google Scholar]
- 55.Tiwari V., Shuklaa S.Y., and Shuklaa D. (2009) A sugar binding protein cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion. Antiviral Res., 84, 67–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Pankaj P.P., Mallick N., Biswas S., and Varma M.C. (2010) In vitro Antimalarial activity of C-phycocyanin from Nostoc Muscorum. The Bioscan, 1, 69–78. [Google Scholar]
- 57.Koharudin L.M.I., Furey W., and Gronenborn A.M. (2010) Novel fold and carbohydrate specificity of the potent anti-HIV cyanobacterial lectin from Oscillatoria agardhii. J. Biol. Chem., 286, 1588–1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Villar R., Laguna M.R., Calleja J.M., and Cadavid I. (1992) Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta Med., 58, 405–409. [DOI] [PubMed] [Google Scholar]
- 59.Villar R., Laguna M.R., Calleja J.M., and Cadavid I. (1992) Effects of Skeletonema costatum extracts on the central nervous system. Planta Med., 58, 398–404. [DOI] [PubMed] [Google Scholar]
- 60.Shih S., Tsai K., Li Y., Chueh C., and Chan E. (2003) Inhibition of Enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J Med Virol, 70, 119–125. [DOI] [PubMed] [Google Scholar]
- 61.Taori K., Liu Y., Paul V.J., and Luesch H. (2009) Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural Dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole. ChemBioChem, 10, 1634–1639. [DOI] [PubMed] [Google Scholar]
- 62.Luesch H., Moore R.E., Paul V.J., Mooberry S.L., and Corbett T.H. (2001) Isolation of Dolastatin 10 from the marine cyanobacterium Symploca Species VP642 and total stereochemistry and biological evaluation of its analogue Symplostatin 1. J. Nat. Prod., 64, 907–910. [DOI] [PubMed] [Google Scholar]
- 63.Wink M. (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3–19. [DOI] [PubMed] [Google Scholar]
- 64.http://www.who.int/bulletin/volumes/89/2/11-030211/en/ (last accessed August 2013).
- 65.Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B., Scheld M., Spellberg B., and Bartlett J. (2009) Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 48, 1–12. [DOI] [PubMed] [Google Scholar]
- 66.http://www.emea.europa.eu/pdfs/human/antimicrobial_resistance/EMEA-576176-2009.pdf (last accessed July 2013).
- 67.Hannon M., Gimpel J., Tran M., Rasala B., and Mayfield S. (2010) Biofuels from algae: challenges and potential. Future Sci., 1, 763–784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Cohen Z. (1999) Chemicals from microalgae. Taylor & Francis Ltd, Oxford. [Google Scholar]
- 69.Xiong S., Fan J., and Kitazato K. (2010) The antiviral protein cyanovirin-N: the current state of its production and applications. Appl. Microbiol. Biotechnol., 86, 805–812. [DOI] [PubMed] [Google Scholar]
- 70.Protein Data Bank. Cyanovirin-N (1LSE,)Barrientos L.G., Louis J.M., Botos I., Mori T., Han Z., O'Keefe B.R., Boyd M.R., Wlodawer A., and Gronenborn A.M. (2002) Structure, 10, 673–686; Microvirin (2Y1S) Shahzad-Ul-Hussan, S., Gustchina, E., Ghirlando, R., Clore, G.M. and Bewley, C.A. (2011) J. Biol. Chem., 286, 20788; Oscillatoria Agardhii Agglutinin (3S60) Koharudin, L.M. and Gronenborn, A.M. (2011) Structure, 19, 1170–1181; Allophycocyanin (1ALL) Brejc, K., Ficner, R., Huber, R. and Steinbacher, S. (1995) J. Mol. Biol., 249, 424–440.12015150 [Google Scholar]
- 71.Wrasidlo W., Mielgo A., Torres V.A., Barbero S., Stoletov K., Suyama T.L., Klemke R.L., Gerwick W.H., Carson D.A., and Stupack D.G. (2007) The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Appl. Biol. Sci., 105, 2313–2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Zheng L., Wang Y., Sheng J., Wang F., Zheng Y., and Lin X., Sun M. (2011) Antitumor peptides from marine organisms. Mar. Drugs, 9, 1840–1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Stewart I., Schluter P.J., and Shaw G.R. (2006) Cyanobacterial lipopolysaccharides and human health–a review. Environ. Health, 5, 1–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Dawson R.M. (1997) The toxicology of microcystins. Toxicon, 36, 953–962. [DOI] [PubMed] [Google Scholar]
- 75.http://www.who.int/water_sanitation_health/resourcesquality/toxcyanchap3.pdf (last accessed July 2013).
- 76.Wu L., Nishiyama K., Hollyfield J.G., and Wang Q. (2002) Localisation of Nav1.5 sodium channel protein in the mouse brain. Neuroreport, 13, 2547–2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Cestèle S., and Catterall W.A. (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie, 82, 883–892. [DOI] [PubMed] [Google Scholar]
- 78.Faber S. (2012) Saxitoxin and the induction of paralytic shellfish poisoning. J. Young Investigators, 23, 1–7. [Google Scholar]
- 79.Aspinall-O'Dea M., Pascal A., Robert B., Ruban A., and Horton P. (2002) In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Plant Biol., 99, 16331–16335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.McDonald M. (2003) Photobiology of higher plants. Wiley, London. [Google Scholar]
- 81.Wu J., Hong S., Wang Y., Hsu S., and Chang C. (2012) Microalgae cultivation and purification of carotenoids using supercritical anti-solvent recrystallisation of CO2 + acetone solution. J. Supercrit. Fluids, 66, 333–341. [Google Scholar]
- 82.Eonseon J., Polle J.E.W., Lee H.K., Hyun S.M., and Chang M. (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol., 13, 165–174. [Google Scholar]
- 83.Yokoyama M., and Origasa H. (2003) Effects of eicosapentaenoic acid on cardiovascular events in Japanese patients with hypercholesterolemia: rationale, design, and baseline characteristics of the Japan EPA Lipid Intervention Study (JELIS). Am. Heart. J., 146, 613–620. [DOI] [PubMed] [Google Scholar]
- 84.James M.J., Gibson R.A., and Cleland L.G. (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr., 71, 343S–8S. [DOI] [PubMed] [Google Scholar]
- 85.Borowitzka M.A. (2013) High-value products from microalgae–their development and commercialisation. J. Appl. Phycol., 25, 743–756. [Google Scholar]
- 86.Rhodes C.J. (2009) Oil from algae; salvation from peak oil? Science Prog., 92, 39–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Pruvost J., Vooren G.V., Cogne G., and Legrand J. (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technol., 100, 5988–5995. [DOI] [PubMed] [Google Scholar]
- 88.Ramos M.J., Fernández C.M., Casas A., Rodríguez L., and Pérez A. (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technol., 100, 261–268. [DOI] [PubMed] [Google Scholar]
- 89.Sharma N.K., Tiwari S.P., Tripathi K., and Rai A.K. (2011) Sustainability and cyanobacteria (blue-green algae): facts and challenges. J. Appl. Phycol., 23, 1059–1081. [Google Scholar]
- 90.Gouveia L., and Oliveira A.C. (2009) Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol., 36, 269–274. [DOI] [PubMed] [Google Scholar]
- 91.Shi D., and Hall D.O. (1988) The Azolla-Anabaena Association: historical perspective, symbiosis and energy metabolism. Botan. Rev., 54, 353–386. [Google Scholar]
- 92.Osman M.E.H., El-Sheekh M.M., El-Naggar A.H., and Gheda S.F. (2010) Effect of two species of cyanobacteria as biofertilisers on some metabolic activities, growth, and yield of pea plant. Biol. Fertil. Soils, 46, 861–875. [Google Scholar]
- 93.Jha M.N., and Prasad A.N. (2006) Efficacy of new inexpensive cyanobacterial biofertiliser including its shelf-life. World J. Microb. Biot., 22, 73–79. [Google Scholar]