Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;97(2):154–172. doi: 10.3184/003685014X13994743930498

Cronobacter: An Emergent Pathogen Causing Meningitis to Neonates through their Feeds

Ben D Tall 4,, Yi Chen 3,, Qiongqiong Yan 1,, Gopal R Gopinath 2,, Christopher J Grim 2,, Karen G Jarvis 2,, Séamus Fanning 1,, Keith A Lampel 5,
PMCID: PMC10365370  PMID: 25108996

Abstract

The recognition of Cronobacter as a public health concern was raised when powdered infant formula (PIF) was linked to several neonatal meningitis outbreaks. It is an opportunistic pathogen that causes necrotising enterocolitis, infantile septicaemia, and meningitis which carries a high mortality rate among neonates. It has been also linked with cases of infection in adults and elderly. Over the past decade, much focus has been made on developing sensitive and specific characterisation, detection, and isolation methods to ascertain the quality of foods, notably contamination of PIF with Cronobacter and to understand its ability to cause disease. Whole genome sequencing has unveiled several putative virulence factors, yet the full capacity of the pathogenesis of Cronobacter has not yet been elucidated.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

References

  • 1.Farmer J.J. III, Hickmann A.M., and Brenner D.J. (1980) Int. J. Syst. Evol. Microbiol., 30, 569–584. [Google Scholar]
  • 2.Iversen C., Lehner A., Mullane N., Bidas E., Cleenwerck I., Marugg J., Fanning S., Stephan R., and Joosten H. (2007) BMC Evol. Biol., 7, 64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Iversen C., Mullane N., McCardell B., Tal B.D., Lehner A., Fanning S., Stephan R., and Joosten H. (2008) Int. J. Syst. Evol. Microbiol., 58, 1442–1447. [DOI] [PubMed] [Google Scholar]
  • 4.Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M.J., and Forsythe S.J. (2011) Int. J. Syst. Evol. Microbiol., 62, 1277–1283. [DOI] [PubMed] [Google Scholar]
  • 5.Brady C., Cleenwerck I., Venter S., Coutinho T., and De Vos P. (2013) Syst. Appl. Microbiol., 36, 309–319. [DOI] [PubMed] [Google Scholar]
  • 6.Stephan R., Grim C.J., Gopinath G.R., Mammel M.K., Sathyamoorthy V., Trach L.H., Chase H.R., Fanning S., and Tall B.D. (2013) Int. J. System. Evol. Microbiol., (submitted). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Urmenyi A.M.C., and White-Franklin A. (1961) The Lancet, 11, 313–315. [DOI] [PubMed] [Google Scholar]
  • 8.FAO/WHO (2008) Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formulae. Microbiological Risk Assessment Series, No. 15. 90 pp., Rome. Italy. [Google Scholar]
  • 9.van Acker J., de Smet F., Muyldermans G., Bougatef A., Naessens A., and Lauwers S. (2001) J. Clin. Microbiol., 39, 293–297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.CDC. (2002) Morb. Mortal. Wkly. Rep., 51, 297–300. [PubMed] [Google Scholar]
  • 11.Himelright I., Harris E., Lorch V., and Anderson M. (2002) J. Am. Med. Assoc., 287, 2204–2205. [Google Scholar]
  • 12.FAO/WHO. (2004) Microbiological Risk Assessment Series, No. 6. 59 pp., Rome, Italy. ftp://ftp.fao.org/docrep/fao/007/y5502e/y5502e00.pdf.
  • 13.FAO/WHO. (2006) Enterobacter sakazakii and Salmonella in powdered infant formula: Meeting report. Microbiological Risk Assessment Series, No. 10. 95 pp, Rome, Italy. ftp://ftp.fao.org/docrep/fao/007/y5502e/y5502e00.pdf.
  • 14.Bar-Oz B., Preminger A., Peleg O., Block C., and Arad I. (2001) Acta Paediatr., 90, 356–358. [PubMed] [Google Scholar]
  • 15.Gurtler J.B., Kornacki J.L., and Beuchat L.R. (2005) Int. J. Food Microbiol., 104, 1–34. [DOI] [PubMed] [Google Scholar]
  • 16.Mullane N., Iversen C., Healy B., Walsh C., Whyte P., Wall P.G., Quinn T., and Fanning S. (2007) Minerva Pediatr., 59, 137–148. [PubMed] [Google Scholar]
  • 17.Yan Q.Q., Condell O., Power K., Butler F., Tall B.D., and Fanning S. (2012) J. Appl. Microbiol., 113, 1–15. [DOI] [PubMed] [Google Scholar]
  • 18.Hunter C.J., and Bean J.F. (2013) J. Perinatol., 33, 581–585. [DOI] [PubMed] [Google Scholar]
  • 19.Bowen A.B., and Braden C.R. (2006) Emerg. Infect. Dis., 12, 1185–1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Friedemann M. (2009) Eur. J. Clin. Microbiol. Infect. Dis., 28, 1297–1304. [DOI] [PubMed] [Google Scholar]
  • 21.Gosney M.A., Martin M.V., Wright A.E., and Gallagher M. (2006) Eur. J. Int. Med., 17, 185–188. [DOI] [PubMed] [Google Scholar]
  • 22.Tsai H-Y., Liao C-H., Huang Y-T., Lee P-I., and Ren Hsueh P.R. (2013) Emerg. Infect. Dis. [Internet]. [cited August 14]. 10.3201/eid1901.120774. [DOI]
  • 23.Skovgaard N. (2007) Int. J. Food Microbiol., 120, 217–224. [DOI] [PubMed] [Google Scholar]
  • 24.Lehner A., Grimm M., Rattei T., Ruepp A., Frishman D., Manzardo G.G.G., and Stephan R. (2006) FEMS Microbiol. Lett., 265, 244–248. [DOI] [PubMed] [Google Scholar]
  • 25.Joseph S., Hariri S., and Forsythe S.J. (2013) Mol. Cell. Probes, 27, 137–139. [DOI] [PubMed] [Google Scholar]
  • 26.Stoop B., Lehner A., Iversen C., Fanning S., and Stephan R. (2009) Int. J. Food Microbiol., 136, 165–168. [DOI] [PubMed] [Google Scholar]
  • 27.Lehner A., Fricker-Feer C., and Stephan R. (2012) J. Med. Microbiol., 67, 1034–1035. [DOI] [PubMed] [Google Scholar]
  • 28.Carter L., Lindsey L., Grim C.J., Sathyamoorthy V., Franco A.A., Jarvis K.G., Gopanath G., Lee C., Sadowski J.A., Trach L., Pava-Ripol M., Tall B.D., and Hu L. (2013) Appl. Environ. Microbiol., 79, 734–737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Baldwin A., Loughlin M., Caubilla-Barron J., Kucerova E., Manning G., Dowson C., and Forsythe S. (2009) BMC Microbiol., 9, 223 doi:10.1186/1471-2180-9-223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Sonbol H., Joseph S., McAuley C.M., Craven H.M., and Forsythe S.J. (2013) Int. Dairy J., 30, 1–7. [Google Scholar]
  • 31.Kucerova E., Clifton S.W., Xia X.Q., Long F., Porwollik S., Fulton L., Fronick C., Minx P., Kyung K., Warren W., Fulton R., Feng D.Y., Wollam A., Shah N., Bhonagiri V., Nash W.E., Hallsworth-Pepin K., Wilson R.K., McClelland M., and Forsythe S.J. (2010) PLoS ONE, 5, e9556. 657. doi:10.1371/journal.pone.0009556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Stephan R., Lehner A., Tischler P., and Rattei T. (2011) J. Bacteriol., 193, 309–310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Joseph S., Desai P., Ji Y.M., Cummings C.A., Shih R., Degoricija L., Rico A., Brzoska P., Hamby S.E., Masood N., Hariri S., Sonbol H., Chuzhanova N., McClelland M., Furtado M.R., and Forsythe S.J. (2012) PloS One, 7, e49455. doi:10.1371/journal.pone.0049455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Grim C.J., Kotewicz M.L., Power K.A., Gopinath G., Franco A.A., Jarvis K.G., Yan Q.Q., Jackson S.A., Sathyamoorthym V., Hu L., Pagotto F., Iversen C., Lehner A., Stephan R., Fanning S., and Tall B.D. (2013) BMC Genomics, 14, 366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Yan Q.Q., Power K.A., Cooney S., Fox E., Gopinathrao G., Grim C., Tall B.D., McCusker M., and Fanning S. (2013) Front. Microbiol., 2 September 2013, doi:10.3389/fmicb.2013.00256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Muytjens H.L., Roelofs-Willemse H., and Jaspar G.H. (1988) J. Clin. Microbiol., 26, 743–746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Iversen C., and Forsythe S. (2004) Food Microbiol., 21, 771–776. [DOI] [PubMed] [Google Scholar]
  • 38.Chap J., Jackson P., Siqueira R., Gaspar N., Quintas C., Park J., Osaili T., Shaker R., Jaradat Z., Hartantyo S.H., Abdullah Sani N., Estuningsih S., and Forsythe S.J. (2009) Int. J. Food Microbiol., 136, 185–188. [DOI] [PubMed] [Google Scholar]
  • 39.Noriega F.R., Kotloff K.L., Martin M.A., and Schwalbe R.S. (1990) Ped. Infect. Dis. J., 9, 447–449. [PubMed] [Google Scholar]
  • 40.Nazarowec-White M., and Farber J.M. (1997) Int. J. Food Microbiol., 34, 103–113. [DOI] [PubMed] [Google Scholar]
  • 41.Jaradat Z.W., Ababneh Q.O., Saadoun I.M., Samara N.A., and Rashdan A.M. (2009) BMC Microbiol., 9, 225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.El-Sharoud W.M., O'Brien S., Negredo C., Iversen C., Fanning S., and Healy B. (2009) BMC Microbiol., 9, 24 doi:10.1186/1471-2180-9-24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Restaino L., Frampton E.W., Lionberg W.C., and Becker R.J. (2006) J. Food Prot., 69, 315–322. [DOI] [PubMed] [Google Scholar]
  • 44.Baumgartner A., Grand M., Liniger M., and Iversen C. (2009) Int. J. Food Microbiol., 136, 189–192. [DOI] [PubMed] [Google Scholar]
  • 45.Turcovský I., Kuniková K., Drahovská H., and Kaclíková E. (2011) A. Van Leeuw. J. Microb., 99, 257–269. [DOI] [PubMed] [Google Scholar]
  • 46.Kandhai M.C., Reij M.W., van Puyvelde K., Guillaume-Gentil O., Beumer R.R., and van Schothorst M. (2004) J. Food Prot., 67, 1267–1270. [DOI] [PubMed] [Google Scholar]
  • 47.Pava-Ripoll M., Pearson R.E.G., Miller A.K., and Ziobro G.C. (2012) Appl. Environ. Microbiol., 78, 7891–7902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Mullane N., Healy B., Meade J., Whyte P., Wall P.G., and Fanning S. (2008) Appl. Environ. Microbiol., 74, 5913–5917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Jacobs C., Braun P., and Hammer P. (2011) J. Dairy Sci., 94, 3801–3810. [DOI] [PubMed] [Google Scholar]
  • 50.Edelson-Mammel S.G., and Buchanan R.L. (2004) J. Food Prot., 67, 60–63. [DOI] [PubMed] [Google Scholar]
  • 51.Breeuwer P., Lardeau A., Peterz M., and Joosten H.M. (2003) J. Appl. Microbiol., 95, 967–973. [DOI] [PubMed] [Google Scholar]
  • 52.Dancer G.I., Mah J.H., Rhee M.S., Hwang I.G., and Kang D.H. (2009) J. Appl. Microbiol., 107, 1606–1614. [DOI] [PubMed] [Google Scholar]
  • 53.Edelson-Mammel S.G., Porteous M.K., and Buchanan R.L. (2005) J. Food Prot., 68, 1900–1902. [DOI] [PubMed] [Google Scholar]
  • 53.Williams T.L., Monday S.R., Edelson-Mammel S., Buchanan R., and Musser S.M. (2005) Proteomics, 5, 4161–4169. [DOI] [PubMed] [Google Scholar]
  • 54.Gajdosova J., Benedikovicova K., Kamodyova N., Tothova L., Kaclikova E., Stuchlik S., Turna J., and Drahovska H. (2011) A. Van Leeuw. J. Microb., 100, 279–289. [DOI] [PubMed] [Google Scholar]
  • 55.Tall B.D., Fanning S., Iversen C., Mullane N., Kothary M.H., Datta A., Carter L., Curtis S.K., and McCardell B.A. (2008) Florence Conf. on Phenotypic MicroArray Anal. Microbiol., p. 56. [Google Scholar]
  • 56.Anriany Y., Ahu S.N., Wessels K.R., McCann L.M., and Joseph S.W. (2006) Appl. Environ. Microbiol., 72, 5002–5012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Cheville A.M., Arnold K.W., Buchrieser C., Cheng C.M., and Kaspar C.W. (1996) Appl. Environ. Microbiol., 62, 1822–1824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Osaili T.M., Shaker R.R., Olaimat A.N., Al-Nabulsi A.A., Al-Holy M.A., and Forsythe S.J. (2008) J. Food Sci., 73, M154. [DOI] [PubMed] [Google Scholar]
  • 59.Hsiao W.-L., Ho W.-L., and Chou C.-C. (2010) Int. J. Food Microbiol., 144, 280–284. [DOI] [PubMed] [Google Scholar]
  • 60.Gahan C.G.M., and Hill C. (1999) Int. J. Food Microbiol., 50, 93–100. [DOI] [PubMed] [Google Scholar]
  • 61.Arku B., Fanning S., and Jordan K. (2011) Foodborne Pathog Dis., 8, 975–981. [DOI] [PubMed] [Google Scholar]
  • 62.Iversen C., and Forsythe S. (2007) Appl. Environ. Microbiol., 73, 48–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Al-Holy M.A., Shin J.H., Osaili T.M., and Rasco B.A. (2011) J. Food Prot., 74, 387–393. [DOI] [PubMed] [Google Scholar]
  • 64.Kim S.A., Yu J.H., and Rhee M.S. (2013) J. Sci. Food Agric., 93, 1520–1524. [DOI] [PubMed] [Google Scholar]
  • 65.Sun Y., Wang M., Liu H., Wang J., He X., Zeng J., Guo X., Li K., Cao B., and Wang L. (2011) Appl. Environ. Microbiol., 77, 2209–2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Wang W., Perepelov A.V., Feng L., Shevelev S.D., Wang Q., Senchenkova S.N., Han W., Li Y., Shashkov A.S., Knirel Y.A., Reeves P.R., and Wang L. (2007) Microbiology, 153, 2159–2167. [DOI] [PubMed] [Google Scholar]
  • 67.Jean-Gilles Beaubrun J., Cheng C.M., Chen K.S., Ewing L., Wang H., Agpaoa M.C., Huang M.C., Dickey E., Du J.M., Williams-Hill D.M., Hamilton B., Micallef S.A., Rosenberg-Goldstein R.E., George A., Joseph S.W., Sapkota A.R., Jacobson A.P., Tall B.D., Kothary M.H., Dudley K., Hanes D.E. (2012) Food Microbiol., 31, 199–209. [DOI] [PubMed] [Google Scholar]
  • 68.Debroy C., Roberts E., and Fratamico P.M. (2011) Anim. Health Res. Rev., 12, 169–185. [DOI] [PubMed] [Google Scholar]
  • 69.Samuel G., and Reeves P. (2003) Carbohydr. Res., 338, 2503–2519. [DOI] [PubMed] [Google Scholar]
  • 70.Sun Y., Wang M., Wang Q., Cao B., He X., Li K., Feng L., and Wang L. (2012) Appl. Environ. Microbiol., 78, 3966–3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Sun Y., Arbatsky N.P., Wang M., Shashkov A.S., Liu B., Wang L., and Knirel Y.A. (2012) FEMS Immunol Med Microbiol., 66, 323–333. [DOI] [PubMed] [Google Scholar]
  • 72.Jarvis K.G., Grim C.J., Franco A.A., Gopinath G., Sathyamoorthy V., Hu L., Sadowski J.A., Lee C.S., and Tall B.D. (2011) Appl. Environ. Microbiol., 77, 4017–4026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Jarvis K.G., Yan Q.Q., Grim C.J., Power K.A., Franco A.A., Hu L., Gopinath G., Sathyamoorthy V., Kotewicz M.L., Kothary M.H., Lee C., Sadowski J., Fanning S., and Tall B.D. (2013) Foodborne Pathog Dis., 10, 343–352. [DOI] [PubMed] [Google Scholar]
  • 74.Liu B., Knirel Y.A., Feng L., Perepelov A.V., Senchenkova S.N., Wang Q., Reeves P.R., and Wang L. (2008) FEMS Microbiol. Rev., 32, 627–653. [DOI] [PubMed] [Google Scholar]
  • 75.Liu B., Perepelov A.V., Svensson M.V., Shevelev S.D., Guo D., Senchenkova S.N., Shashkov A.S., Weintraub A., Feng L., Widmalm G., Knirel Y.A., and Wang L. (2010) Glycobiology, 20, 679–688. [DOI] [PubMed] [Google Scholar]
  • 76.Liu B., Knirel Y.A., Feng L., Perepelov A.V., Senchenkova S.N., Wang Q., Reeves P.R., and Wang L. (2008) FEMS Microbiol. Rev., 32, 627–653. [DOI] [PubMed] [Google Scholar]
  • 77.Liu B., Perepelov A.V., Svensson M.V., Shevelev S.D., Guo D., Senchenkova S.N., Shashkov A.S., Weintraub A., Feng L., Widmalm G., Knirel Y.A., and Wang L. (2010) Glycobiology, 20, 679–688. [DOI] [PubMed] [Google Scholar]
  • 78.Mullane N., O'Gaora P., Nally J.E., Iversen C., Whyte P., Wall P.G., and Fanning S. (2008) Appl. Environ. Microbiol., 74, 3783–3794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Nair M.K., Venkitanarayanan K., Silbart L.K., and Kim K.S. (2009) Foodborne Pathog. Dis., 6, 495–501. [DOI] [PubMed] [Google Scholar]
  • 80.Franco A.A., Hu L., Grim C.J., Gopinath G., Sathyamoorthy V., Jarvis K.G., Lee C., Sadowski J., Kim J., Kothary H., McCardell B.A., and Tall B.D. (2011) Appl. Environ. Microbiol., 77, 3255–3267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Kothary M.H., McCardell B.A., Frazar C.D., Deer D., and Tall B.D. (2007) Appl. Environ. Microbiol., 73, 4142–4151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Townsend S.M., Hurrell E., Gonzalez-Gomez I., Lowe J., Frye J.G., Forsythe S., and Badger J.L. (2007) Microbiology, 153, 3538–3547. [DOI] [PubMed] [Google Scholar]
  • 83.Liu Q., Mittal R., Emami C.N., Iversen C., Ford H.R., and Prasadarao N.V. (2012) J. Surg. Res., 176, 437–447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kim K., Kim K.P., Choi J., Lim J.A., Lee J., Hwang S., and Ryu S. (2010) Appl. Environ. Microbiol., 76, 5188–5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Pagotto F.J., Nazarowec-White M., Bidawid S., and Farber J.M. (2003) J. Food Prot., 66, 370–375. [DOI] [PubMed] [Google Scholar]
  • 86.Cruz A., Xicohtencatl-Cortes J., González-Pedrajo B., Bobadilla M., Eslava C., and Rosas I. (2011) Can. J. Microbiol., 57, 735–744. [DOI] [PubMed] [Google Scholar]
  • 87.Grishin A., Papillon S., Bell B., Wang J., and Ford H. (2013) Sem. Ped. Surgery, 22, 69–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Giri C.P., Shima K., Tall B.D., Curtis S., Sathyamoorthy V., Hanisch B., Kim K.S., and Kopecko D.J. (2012) Microb. Pathog., 52, 140–147. [DOI] [PubMed] [Google Scholar]
  • 89.Modak R., Das Mitra S., Krishnamoorthy P., Bhat A., Banerjee A., Gowsica B.R., Bhuvana M., Dhanikachalam V., Natesan K., Shome R., Shome B.R., and Kundu T.K. (2012) Epigenetics, 7, 492–501. [DOI] [PubMed] [Google Scholar]
  • 90.Mujtaba S., Winer B.Y., Jaganathan A., Patel J., Sgobba M., Schuch R., Gupta Y.K., Haider S., Wang R., and Fischetti V.A. (2013) J. Biol. Chem., 288, 23458–23472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Schwizer S., Tasara T., Zurfluh K., Stephan R., and Lehner A. (2013) BMC Microbiol., 13, 38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Fehri L.F., Rechner C., Janßen S., Mak T.N., Holland C., Bartfeld S., Brüggemann H., and Meyer T.F. (2009) Epigenetics, 4, 577–586. [DOI] [PubMed] [Google Scholar]
  • 93.Medini D., Donati C., Tettelin H., Masignani V., and Rappuoli R. (2005) Curr. Opin. Gen. Devel., 15, 589–594. [DOI] [PubMed] [Google Scholar]
  • 94.Grim C.J., Kothary M.H., Gopinath G., Jarvis K.G., Beaubrun J.J., McClelland M., and Tall B.D. (2013) Appl. Environ. Microbiol., 79, 734–737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Schmid M., Iversen C., Gonitia I., Stephan R., Hofmann A., Hartmann A., Jha B., Eberl L., Riedel K., and Lehner A. (2009) Res. Microbiol., 160, 608–614. [DOI] [PubMed] [Google Scholar]
  • 96.Joseph S., and Forsythe S.J. (2012) Front. Microbiol., 22 November 2012 doi: 10.3389/fmicb.2012.00397.22319520 [Google Scholar]
  • 97.Franco A.A., Kothary M.H., Gopinath K., Jarvis K.G., Grim C.J., Hu L., Datta A.R., McCardell B.A., and Tall B.D. (2011) Infect. Immunol., 79, 1578–1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Abbasifar R., Kropinski A.M., Sabour P.M., Ackermann H.W., Alanis-Villa A., Abbasifar A., and Griffiths M.W. (2013) Genome Announc., 2013 Jan; 1(1). pii: e00122–12. doi: 10.1128/genomeA.00122-12. Epub 2013 Feb 14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Abbasifar R., Kropinski A.M., Sabour P.M., Ackermann H.W., Alanis-Villa A., Abbasifar A., and Griffiths M.W. (2013) J. Virol., 86, 13830–13831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Abbasifar R., Kropinski A.M., Sabour P.M., Ackermann H.W., Lingohr E.J., and Griffiths M.W. (2012) J. Virol., 86, 13806–13807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Lee Y.D., Chang H.I., and Park J.H. (2011) Arch. Virol., 156, 721–724. [DOI] [PubMed] [Google Scholar]
  • 102.Lee Y.D., and Park J.H. (2012) J. Virol., 86, 5400–5401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Lee Y.D., Kim J.Y., Park J.H., and Chang H. (2012) Arch. Virol., 157, 199–202. [DOI] [PubMed] [Google Scholar]
  • 104.Lee Y.D., Park J.H., and Chang H.I. (2011. a) Arch. Virol., 156, 2105–2108. [DOI] [PubMed] [Google Scholar]
  • 105.Lee J.H., Choi Y., Shin H., Lee J., and Ryu S. (2012) J. Virol., 86, 7713–7714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Shin H., Lee J.H., Kim Y., and Ryu S. (2012) J. Virol., 86, 6367–6368. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES