Skip to main content
Science Progress logoLink to Science Progress
. 2014 Sep 1;97(3):279–287. doi: 10.3184/003685014X14098307810589

Perovskites and their Potential use in Solar Energy Applications

Christopher J Rhodes 1,
PMCID: PMC10365389  PMID: 25551167

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

References

  • 1.Wenk H.-R., and Bulakh A. (2004) Minerals: their constitution and origin. Cambridge University Press, New York. [Google Scholar]
  • 2.http://en.wikipedia.org/wiki/Perovskite_%28structure%29.
  • 3.Hodes H. (2013) Perovskite-based solar cells. Science, 343, 317–318. [DOI] [PubMed] [Google Scholar]
  • 4.Rhodes C.J. (2010) Solar energy: principles and possibilities. Sci. Prog., 93, 37–112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Rhodes C.J. (2011) Shortage of resources for renewable energy and food production. Sci. Prog., 94, 323–334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Liu M. et al. (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501 (7467), 395–398. [DOI] [PubMed] [Google Scholar]
  • 7.Stranks S.D. et al. (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341–344. [DOI] [PubMed] [Google Scholar]
  • 8.Xing G. et al. (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344–347. [DOI] [PubMed] [Google Scholar]
  • 9.Kamat P.V. (2014) Organometal halide perovskites for transformative photovoltaics. J. Am. Chem. Soc., 136, 3713–3714. [DOI] [PubMed] [Google Scholar]
  • 10.Park N.-G. (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 4, 2423–2429. [Google Scholar]
  • 11.Yella A. et al. (2014) Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett., 14, 2591–2596. [DOI] [PubMed] [Google Scholar]
  • 12.Saurez B. et al. (2014) Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett., 5, 1628–1635. [DOI] [PubMed] [Google Scholar]
  • 13.Quarti C. et al. (2014) The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of Theory and Experiment. J. Phys. Chem. Lett., 5(2), 279–284. [DOI] [PubMed] [Google Scholar]
  • 14.Frost J.M. et al. (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett., 14, 2584–2590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Roiati V. et al. (2014) Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. Nano Lett., 14, 2168–2174. [DOI] [PubMed] [Google Scholar]
  • 16.Lindblad R. et al. (2014) Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett., 5, 648–653. [DOI] [PubMed] [Google Scholar]
  • 17.Kim J. et al. (2014) The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett., 5, 1312–1317. [DOI] [PubMed] [Google Scholar]
  • 18.De Wolff S. et al. (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 5, 1035–1039. [DOI] [PubMed] [Google Scholar]
  • 19.Abate A. et al. (2014) Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett., Article ASAP DOI: 10.1021/nl500627x http://pubs.acs.org/doi/abs/10.1021/nl500627x. [DOI] [PubMed]
  • 20.Even J. et al. (2013) Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett., 4, 2999–3005. [Google Scholar]
  • 21.Mosconi E. et al. (2013) First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C., 117, 13902–13913. [Google Scholar]
  • 22.Marchioro A. et al. (2014) Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 8, 250–255. [Google Scholar]
  • 23.Chen Q. et al. (2014) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc., 136, 622–625. [DOI] [PubMed] [Google Scholar]
  • 24.Schmidt L.C. et al. (2014) Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc., 136, 850–853. [DOI] [PubMed] [Google Scholar]
  • 25.Zhao Y., and Zhu K. (2013) Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett., 4, 2880–2884. [Google Scholar]
  • 26.Zhao Y. et al. (2014) Solid-state mesostructured perovskite CH3NH3PbI3 solar cells: charge transport, recombination, and diffusion length. J. Phys. Chem. Lett., 5, 490–494. [DOI] [PubMed] [Google Scholar]
  • 27.Koh T.M. et al. (2013) Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C., Article ASAP DOI: 10.1021/jp411112k. [Google Scholar]
  • 28.Bi D. et al. (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett., 4, 1532–1536. [DOI] [PubMed] [Google Scholar]
  • 29.Christians J.A. et al. (2014) An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc., 136, 758–764. [DOI] [PubMed] [Google Scholar]
  • 30.Jeon N.J. et al. (2013) Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc., 135, 19087–19090. [DOI] [PubMed] [Google Scholar]
  • 31.Extance A. (2014) The power of perovskites. Chemistry World, 11, 46–49. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES