Skip to main content
Science Progress logoLink to Science Progress
. 2011 Sep 1;94(3):265–297. doi: 10.3184/003685011X13138407794135

Ionic liquids–an Overview

Harry Donald Brooke Jenkins 1,
PMCID: PMC10365391  PMID: 22026149

Abstract

A virtually unprecedented exponential burst of activity resulted following the publication, in 1998, of an article by Michael Freeman (Freemantle, M. Chemical & Engineering News, 1998, March 30, 32), which speculated on the role and contribution that ionic liquids (ILs) might make in the future on the development of clean technology. Up until that time only a handful of researchers were routinely engaged in the study of ILs but frenzied activity followed that continues until the present day. Scientists from all disciplines related to Chemistry have now embarked on studies, including theoreticians who are immersed in the aim of improving the “designer role” so that they can tailor ILs to deliver specified properties. This article, whilst not in any sense attempting to be exhaustive, highlights the main features which characterise ILs, presenting these in a form readily assimilated by newcomers to this area of research. An extensive glossary is featured in this article as well as a chronological list which charts the major areas of development. What follows consists of a number of sections briefly describing the role of ILs as solvents, hypergolic fuels, their use in some electrochemical devices such as solar cells and lithium batteries and their use in polymerisation reactions, followed by a concise summary of some of the other roles that they are capable of playing. The role of empirical, volume-based thermodynamics procedures, as well as large scale computational studies on ILs is also highlighted. These developments which are described are remarkable in that they have been achieved in less than a decade and a half, although knowledge of these materials has existed for much longer.

Keywords: ionic liquids, room temperature ionic liquids, non-aqueous ionic liquids, ambient temperature ionic liquids, ionic liquid solvents, ionic liquid hypergolic fuels, volume-based thermodynamics, large scale computations on ionic liquids, ionic liquids in electrochemical devices, ionic liquids in polymerisation reactions

Full Text

The Full Text of this article is available as a PDF (209.8 KB).

References

  • 1.Wasserscheid P., and Keim W. (2000) Angew. Chem., 112, 3926–3945. [DOI] [PubMed] [Google Scholar]
  • 2.Rebelo L.P.N., Lopes J.N.C.J., Esperanza M.S.S., and Filipe E. (2005) J. Phys. Chem, 109, 6040. [DOI] [PubMed] [Google Scholar]
  • 3.Holbrey J.D., and Rogers R.D. (2008) In: Wasserscheid P., and Welton T. (eds), ILs in Synthesis, Vol. 1, p. 57. Wiley VCH, Weinheim. [Google Scholar]
  • 4.Freemantle M. (2010) An introduction to ILs. Royal Society of Chemistry, London. [Google Scholar]
  • 5.Bloom H. (1962) Discuss. Faraday Soc., 32, 7. [Google Scholar]
  • 6.Yoke J.T. III, Weiss J.F., and Tollin G. (1963) Inorg. Chem., 2, 1210. [Google Scholar]
  • 7.Bockris J.O.M., and Reddy A.K.N. (1970) Modern electrochemistry. Plenum Publishing, New York. [Google Scholar]
  • 8.Koch V.R., Miller L.L., and Oysteryoung R.A. (1976) J. Am. Chem. Soc., 98, 5277. [Google Scholar]
  • 9.Gale R.J., Gilbert B., and Oysteryoung R.A. (1978) Inorg. Chem., 17, 2728. [Google Scholar]
  • 10.Wilkes J.S., Levisky J.A., Wilson R.A., and Hussey C.L. (1982) Inorg. Chem., 21, 1263. [Google Scholar]
  • 11.Wilkes J.S., and Zaworotko M.J. (1992) J. Chem. Soc. Chem. Commun., 965. [Google Scholar]
  • 12.Bonhöte P., Dias A.-P., Papageorgiou N., Kalyanasundaram K., and Grätzel M. (1996) Inorg. Chem., 35, 1168. [DOI] [PubMed] [Google Scholar]
  • 13.Gordon J.E. (1964) J. Am. Chem. Soc., 86, 4492. [Google Scholar]
  • 14.Parshall G.W. (1972) J. Am. Chem. Soc., 94, 8716. [Google Scholar]
  • 15.Knifton J.F. (1981) J. Am. Chem. Soc., 103, 3959. [Google Scholar]
  • 16.Pacholec F., Butler H.T., and Poole C.F., (1982) Anal. Chem., 54, 1938. [Google Scholar]
  • 17.Magnuson D.K., Bodley J.W., and Evans D.F. (1984) J. Solution Chem., 13, 583. [Google Scholar]
  • 18.Chauvin Y., Gilbert B., and Guibard I. (1990) J. Chem. Soc., Chem. Commun., 1715. [Google Scholar]
  • 19.Chauvin Y., Mussmann L., and Oliver H. (1995) Angew. Chem. Int. Ed., 34, 2698. [Google Scholar]
  • 20.Seddon K. (1997) J. Chem. Technol. Biotechnol., 68, 351–356. [Google Scholar]
  • 21.Freemantle M. (1998) Chem. Eng. News, March 30, 32. [Google Scholar]
  • 22.Christe K.O., Wilson W.W., Sheeby J.A., and Boatz J.A. (1999) Angew. Chem. Int. Ed., 38, 2004–2009. [DOI] [PubMed] [Google Scholar]
  • 23.Vij A., Wilson W.W., Vij V., Tham F.S., Sheehy J.A., and Christe K.O. (2001) J. Am. Chem. Soc., 123, 6308–6313. [DOI] [PubMed] [Google Scholar]
  • 24.Fau S., Wilson K.J., and Bartlett R.J. (2002) J. Phys. Chem. A, 106, 4639–4644. [Google Scholar]
  • 25.Dixon D.A., Feller D., Christe K.O., Wilson W.W., Vij A., Vij V., Jenkins H.D.B., Olson R.M., and Gordon M.S. (2004) J. Am. Chem. Soc., 126, 834–843. [DOI] [PubMed] [Google Scholar]
  • 26.Gutowski K.E., Holbrey J.D., Rogers R.D., and Dixon D.A. (2005) J. Phys. Chem. B, 109, 23196–23208. [DOI] [PubMed] [Google Scholar]
  • 27.Krossing I., Slattery J.M., Daguenet C., Dyson P., Oleinikova A., Weingärtner H. (2006) J. Am. Chem. Soc., 128, 13427–13434. [DOI] [PubMed] [Google Scholar]
  • 28.Gutowski K.E., Rogers R.D., and Dixon D.A. (2007) J. Phys. Chem. B, 111, 4788–4800. [DOI] [PubMed] [Google Scholar]
  • 29.Verevkin S.P., Emel'yanenko V.N., Zaitsau D.H., Heintz A., Muzny C.D., and Frenkel M. (2010) Phys. Chem. Chem. Phys., 12, 14994–15000. [DOI] [PubMed] [Google Scholar]
  • 30.Emel'yanenko V.E., Zaitsau D.H., Verevkin S.P., and Heintz A. (2011) Thermochim. Acta, 518, 107–110. [Google Scholar]
  • 31.Emel'yanenko V.N., Verevkin S.P., Heintz A., Voss K., and Schultz A. (2009) J. Phys. Chem. B, 113, 9871–9876. [DOI] [PubMed] [Google Scholar]
  • 32.Emel'yanenko V.N., Verevkin S.P., Heintz A., and Schick C (2008) J. Phys. Chem. B, 112, 8095–8098. [DOI] [PubMed] [Google Scholar]
  • 33.Emel'yanenko V.E., Verevkin S.P., and Heintz A. (2007) J. Am. Chem. Soc., 129, 3930–3937. [DOI] [PubMed] [Google Scholar]
  • 34.Zaitsau D.H., Kabo G.J., Strechan A.A., Paulechka Y.U., Tschersich A., Verevkin S.P., and Heintz A. (2006) J. Phys. Chem. A, 110, 7303–7308. [DOI] [PubMed] [Google Scholar]
  • 35.Emel'yanenko V.N., Verevkin S.P., Koutek B., and Doubsky J. (2005) J. Chem. Thermod., 37, 73–81. [Google Scholar]
  • 36.Roganov G.N., Pisarev P.N., and Emel'yanenko V.N. (2005) J. Chem. Eng. Data, 50, 1114–1124. [Google Scholar]
  • 37.Jenkins H.D.B. (2011) Sci. Prog., 94, 184–211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Chambreau S.D., Schneider S., Rosander M., Hawkins T., Gallegos C.J., Pastewait M.F., and Vaghjiani G.L. (2008) J. Phys. Chem. A, 112, 7816–7824. [DOI] [PubMed] [Google Scholar]
  • 39.Schneider S., Hawkins T., Rosander M., Vaghjiani G.L., Chambreau S.D., and Drake G. (2008) Energy Fuels, 22, 2871–2872. [Google Scholar]
  • 40.Zhang Y., Gao H., Joo Y.-H., and Shreeve J.M. (2010) Angew. Chem. Int, Ed., PMID:21077083. [Google Scholar]
  • 41.Jenkins H.D.B. (2009) Sci. Prog., 92, 91–112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Glasser L., and Jenkins H.D.B. (2010) J. Chem. Eng. Data, 56, 874–880. [Google Scholar]
  • 43.Jenkins H.D.B., Roobottom H.K., Passmore J., and Glasser L. (1999) Inorg. Chem., 38, 3609–3620. [DOI] [PubMed] [Google Scholar]
  • 44.Klapötke T.M., Stierstorfer J., Jenkins H.D.B., van Eldik R., and Schmeisser M. (2011) Z. Anorg. Allg. Chem., in press. [Google Scholar]
  • 45.Rhodes C.J. (2011) Sci. Prog., 94, 211–220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Borra E.F. (2007) Nature, 447, 979. [DOI] [PubMed] [Google Scholar]
  • 47.Hilgers C., and Wasserscheid P. (2002) In: Wasserscheid P., and Welton T. (eds), ILs in synthesis, pp. 21–33. Wiley-VCH, Weinheim. [Google Scholar]
  • 48.Solvent Innovation. www.solvent-innovation.com.
  • 49.Wasserscheid P., van Hal R., and Bössman A. (2002) Green Chem., 4, 400–404. [Google Scholar]
  • 50.Pernak J., Czepukowicz A., and Pozniak R. (2001) Ind. Eng. Chem. Res., 40, 2379–2383. [Google Scholar]
  • 51.Wassercheid P., Bösmann A., and van Hal R. (2002) Application of new halogen-free ILs. 224th National Meeting ACS, Boston, MA. [Google Scholar]
  • 52.Swatloski R.P., Spear S.K., John D.J., Holbrey D., and Rogers R.D. (2002) J. Am. Chem. Soc., 124, 4974–4975. [DOI] [PubMed] [Google Scholar]
  • 53.Zhang H., Wu J., Zhang J., and He J.S. (2005) Macromolecules, 38, 8272–8277. [Google Scholar]
  • 54.Fukaya Y., Sugimoto A., and Ohno H. (2006) Biomacromolecules, 7, 3295–3297. [DOI] [PubMed] [Google Scholar]
  • 55.Cao Y., Wu J., Zhang J., Li H.Q., Zhang Y., and He J.S. (2009) Chem. Eng. J., 147, 13–21. [Google Scholar]
  • 56.Xu A.R., Wang J.J., and Wang H.Y. (2010) Green Chem., 12, 268–275. [Google Scholar]
  • 57.Patell Y., Seddon K.R., Dutta L., and Fleet A. (2002) In: Rodgers R.D., Seddon K.R., and Volkov S. (eds), Green industrial applications of ILs, p. 499. NATO Science Series, Kluwer Academic Publishers, Dordecht. [Google Scholar]
  • 58.Freemantle M. (2000) Chem. Eng. News, 78, 37–50. [Google Scholar]
  • 59.Freemantle M. (2003) Chem. Eng. News, 81, 9. [Google Scholar]
  • 60.Jork C., Seiler M., Beste Y.-A., and Arlt W. (2004) J. Chem. Eng. Data, 49, 852–857. [Google Scholar]
  • 61.Blanchard L.A., Gu Z., Brennecke J.F., and Beckman E.J. (2002) In: Rodgers R.D., Seddon K.R., and Volkov S. (eds), Green industrial applications of ILs, p. 403. NATO Science Series, Kluwer, Dordrecht. [Google Scholar]
  • 62.Kulkarni S.G. (1980) J. Armament Stud., 16, 23–27. [Google Scholar]
  • 63.Arnold S.L. (1999) Chemical Propulsion Information Agency Publication No 687 (JANAF 28th Propellant and Characterisation and 17th Safety and Environmental Protection Subcommittee Joint Meeting, Vol. 1) p. 301 and references therein.
  • 64.Thompson D.M. (2000) U.S. Patent 6,013,143., Jan. 11th. (2001) U.S. Patent 6,210,504, Apr. 3rd. (2001) U.S. Patent 6,299,654., Oct. 9th.
  • 65.Jain S.R. (2003) J. Sci. Ind. Res., 62, 293–310. [Google Scholar]
  • 66.McQuaid D. (2005) U.S. Patent 6,962,633., Nov. 8th.
  • 67.Hallit R.E.A., and Bauerle G. (2005) U.S. Patent 6,949,152, Sep. 27th.
  • 68.Katritzky A.R., Rogers R.M., Witek A.V., Vakulenko A.V., Mohapatra P.P., Steel P.J., and Damavarapu R. (2007) J. Energ. Mater., 25, 79–109. [Google Scholar]
  • 69.Sengupta D. (2008) U.S. Patent Appl. 2008/0202655, Aug. 28th.
  • 70.Williams F.A. (2009) J. Prop. Power, 25, 1354–1356. [Google Scholar]
  • 71.Kulkarni S.G., Bagalkote V.S., Patil S., Kumar U.P., and Kumar V. A. (2009) Propell. Explos. Pyrot., 34, 520–525. [Google Scholar]
  • 72.Wang S., Thynell S.T., and Chowdhury A. (2010) Energy Fuels, 24, 5320–5330. [Google Scholar]
  • 73.Kulkarni S.G., and Bagalkote V.S. (2010) J. Energ. Mater., 28, 173–188. [Google Scholar]
  • 74.Desai S.C., Willitsford A.H., Sumanasekera G.U., Yu M., Tian W.Q., Jayanthi C.S., and Wu S.Y. (2010) J. Appl. Phys., 107, 114509/1–114509/7. [Google Scholar]
  • 75.Yokel S., and Schatz G.C. (2010) J. Phys. Chem. B, 114, 14241–14248. [DOI] [PubMed] [Google Scholar]
  • 76.ESTEC Tender Invitation AO6817 (2011) Technologies and Product Division, Spacecraft Bus/Propulsion, ARTES 5.1., 11.1TT.68.
  • 77.Christe K.O., and Drake G.W. (2010) U.S. 7771549B1. U.S. Department of the Air Force.
  • 78.Kappenstein C., and Joulin J. P. (2006) Adv. Sci. Tech., 45, 2143–2152. [Google Scholar]
  • 79.Zhang Y., Joo Y.-H., and Shreeve J.M. (2010) Prep. Symp. Am. Chem. Soc., Div. Fuel Chem., 55, 159. [Google Scholar]
  • 80.Izgorodina E.I. (2011) Phys. Chem. Chem. Phys., in press, doi: 10.1039/c0cp02315a. [Google Scholar]
  • 81.Sun J., Forsyth M., and MacFarlane D.R. (1998) J. Phys. Chem. B, 102, 8858–8864. [Google Scholar]
  • 82.Weingärtner H., (2008) Angew. Chem. Int. Ed., 47, 654–670. [DOI] [PubMed] [Google Scholar]
  • 83.Krossing I., and Slattery J.M. (2006) Z. Phys. Chem., 220, 1343–1359. [Google Scholar]
  • 84.Slattery J.M., Dagunet C., Dyson P.J., Schubert T.J.S., and Krossing I. (2007) Angew. Chem. Int. Edit., 46, 5384–5388. [DOI] [PubMed] [Google Scholar]
  • 85.Ludwig R., and Paschek D. (2009) Chem. Phys. Phys. Chem., 10, 516–519. [DOI] [PubMed] [Google Scholar]
  • 86.Bonhote P., Dias A.-P., Papageorgiou N., Kalyanasundaram K., and Grätzel M. (1996) Inorg. Chem., 35, 1168–1178. [DOI] [PubMed] [Google Scholar]
  • 87.Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., and Rogers R.D. (2001) Green Chem., 3, 516–519. [Google Scholar]
  • 88.Bhargava B.L., Balasubramanian S., and Klein M. (2008) Chem. Commun., 3339–3351. [DOI] [PubMed] [Google Scholar]
  • 89.Del Pópolo M.G., Kohanoff J., Lynden-Bell R.M., and Pinilla, (2007) Accounts Chem. Res., 40, 1156–1164. [DOI] [PubMed] [Google Scholar]
  • 90.Car R., and Parinello M. (1985) Phys. Rev. Lett., 55, 2471–2474. [DOI] [PubMed] [Google Scholar]
  • 91.Gordon M.S., Mullin J.M., Pruitt S.R., Roskop L.B., Slipchenko L.V., and Boatz J.A. (2009) J. Phys. Chem. B, 113, 9646–9663. [DOI] [PubMed] [Google Scholar]
  • 92.Wang P., Zakeeruddin S.M., Moser J.-E., and Graetzel M. (2003) J. Phys. Chem. B, 107, 13280. [Google Scholar]
  • 93.Kuang D., Wang P., Ito S., Zakeeruddin S.M., and Graetzel M. (2006) J. Am. Chem. Soc., 128, 7732–7733. [DOI] [PubMed] [Google Scholar]
  • 94.Oda T., Tanaka S., and Hayase S. (2006) Sol. Energy Mater. Sol. Cells, 90, 2696–2709. [Google Scholar]
  • 95.Wang P., Zakeeruddin S.M., Moser J.-E., Humphry-Baker R., and Graetzel M. (2004) J. Am. Chem. Soc., 126, 7165. [DOI] [PubMed] [Google Scholar]
  • 96.Holzapfel M., Jost C., Prodi-Schwab A., Krumeich F., Würsig A., Buqa H., and Novák P. (2005) Carbon, 43, 1488. [Google Scholar]
  • 97.Carmichael A.J., Haddleton D.M., Bon S.A.F., and Seddon K.R. (2000) Chem. Commun., 1237. [Google Scholar]
  • 98.Scott M., Brazel C.S., Benton M.G., Mays J.W., Holbrey J.D., and Rogers R.D. (2002) Chem. Commun., 1370. [DOI] [PubMed] [Google Scholar]
  • 99.Majewski P., Pernak A., Grzymislawski M., Iwanik K., and Penak J. (2003) Acta Histochem., 105, 135. [DOI] [PubMed] [Google Scholar]
  • 100.Kumar V., and Malhorta S.V. (2008) Bioorg. Med. Chem. Lett., 18, 5640. [DOI] [PubMed] [Google Scholar]
  • 101.Pernak J., Sobaskiewicz K., and Mirska I. (2003) Green Chem., 5, 52. [Google Scholar]
  • 102.Rodriquez H., Williams M., Wilkes J.S., and Rogers R.D. (2008) Green Chem., 10, 502. [Google Scholar]
  • 103.Ye C., Liu W., Chen Y., and Yu L. (2001) Chem. Commun., 2244. [DOI] [PubMed] [Google Scholar]
  • 104.Kömpf M. (2006) Linde Technol. (January) 24. [Google Scholar]
  • 105.Valette H., Ferron L., Coquerel G., Gaumont A.-C., and Plaquevent J.-C. (2006) Tetrahedron Lett., 45, 1617. [Google Scholar]
  • 106.Howarth J. (2000) Tetrahedron Lett., 41, 6627. [Google Scholar]
  • 107.Muzat J. (2006) Adv. Synth. Catal., 348, 275. [Google Scholar]
  • 108.Dai S., Ju Y.H., Gao H.J., Lin J.S., Pennycook S.J., and Barnes C.E. (2000) Chem. Commun., 243. [Google Scholar]
  • 109.Freemantle M. (2010) An Introduction to ILs, Royal Society of Chemistry Publishing, London. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES