Abstract
Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.
Keywords: optical trapping, optical manipulation, continuous-wave lasers, laser pulses, micro- and nano-sized particles, geometrical-optics and Mie regimes, Rayleigh approximation, optical Lorentz force, attractive and repulsive optical forces
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
References
- 1.Ashkin A. (1970) Phys. Rev. Lett., 24, 156. [Google Scholar]
- 2.Tlusty T., Meller A., and Bar-Ziv R. (1998) Phys. Rev. Lett., 81, 1738. [Google Scholar]
- 3.Bartlett P., and Henderson S. (2002) J. Phys.: Condens. Matter, 14, 7757. [Google Scholar]
- 4.Neuman K.C., and Block S.M. (2004) Rev. Sci. Instrum., 75, 2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Ashkin A., Dziedzic J.M., Bjorkholm J.E., and Chu S. (1986) Opt. Lett., 11, 288. [DOI] [PubMed] [Google Scholar]
- 6.Ashkin A., Schütze K., Dziedzic J.M., Euteneuer U., and Schliwa M. (1990) Nature, 348, 346. [DOI] [PubMed] [Google Scholar]
- 7.Sasaki K., Koshiuka M., Kitamara N., and Masuhara H. (1991) Opt. Lett., 16, 1463. [DOI] [PubMed] [Google Scholar]
- 8.Svoboda K., and Block S. M. (1994) Ann. Rev. Biophys. Biomol. Struct., 23, 247. [DOI] [PubMed] [Google Scholar]
- 9.Ashkin A. (1997) Proc. Natl. Acad. Sci. USA, 94, 4853.9144154 [Google Scholar]
- 10.Grier D.G. (2003) Nature, 424, 810. [DOI] [PubMed] [Google Scholar]
- 11.Ashkin A. (2000) IEEE J. Quantum Electron., 6, 841. [Google Scholar]
- 12.Molloy J.E., and Padgett M.J. (2002) Contemp. Phys., 43, 241. [Google Scholar]
- 13.Dholakia K., Reece P., and Gu M. (2008) Chem. Soc. Rev., 37, 42. [DOI] [PubMed] [Google Scholar]
- 14.Sugiyama T., Yuyama K., and Masuhara H. (2012) Acc. Chem. Res., 45, 1946. [DOI] [PubMed] [Google Scholar]
- 15.Hotta J., Sasaki K., and Masuhara H. (1996) J. Am. Chem. Soc., 118, 11968. [Google Scholar]
- 16.Hofkens J., Hotta J., Sasaki K., Masuhara H., and Iwai K. (1997) Langmuir, 13, 414. [Google Scholar]
- 17.Ito S., Yoshikawa H., and Masuhara H. (2001) Appl. Phys. Lett., 78, 2566. [Google Scholar]
- 18.Ito S., Yoshikawa H., and Masuhara H. (2002) Appl. Phys. Lett., 80, 482. [Google Scholar]
- 19.Urban A.S., Lutich A.A., Stefani F.D., and Feldmann J. (2010) Nano Lett., 10, 4794. [DOI] [PubMed] [Google Scholar]
- 20.Borowicz P., Hotta J., Sasaki K., and Masuhara H. (1997) J. Phys. Chem. B, 101, 5900. [Google Scholar]
- 21.Hosokawa C., Yoshikawa H., and Masuhara H. (2004) Phys. Rev. E, 70, 061410. [DOI] [PubMed] [Google Scholar]
- 22.Hosokawa C., Yoshikawa H., and Masuhara H. (2005) Phys. Rev. E, 72, 021408. [DOI] [PubMed] [Google Scholar]
- 23.Ito S., Tanaka Y., Yoshikawa H., Ishibashi Y., Miyasaka H., and Masuhara H. (2011) J. Am. Chem. Soc., 113, 14472. [DOI] [PubMed] [Google Scholar]
- 24.Sugiyama T., Adachi T., and Masuhara H. (2007) Chem. Lett., 36, 1480. [Google Scholar]
- 25.Sugiyama T., Adachi T., and Masuhara H. (2009) Chem. Lett., 38, 482. [Google Scholar]
- 26.Alexander A.J., and Camp P.J. (2009) Cryst. Growth Des., 9, 958. [Google Scholar]
- 27.Rungsimanon T., Yuyama K., Sugiyama T., Masuhara H., Tohnai N., and Miyata M. (2010) J. Phys. Chem. Lett., 1, 599. [Google Scholar]
- 28.Tsuboi Y., Shoji T., and Kitamura N. (2010) J. Phys. Chem. C, 114, 5589. [Google Scholar]
- 29.Masuhara H., Sugiyama T., Rungsimanon T., Yuyama K., Miura A., and Tu J.-R. (2011) Pure Appl. Chem., 83, 869. [Google Scholar]
- 30.Ashkin A., Dziedzic J.M., and Yamane T. (1987) Nature, 330, 769. [DOI] [PubMed] [Google Scholar]
- 31.Liu Y., Sonek G.J., Berns M.W., and Tromberg B.J. (1996) Biophys. J., 71, 2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Ashkin A., and Dziedzic J.M. (1987) Science, 235, 1517. [DOI] [PubMed] [Google Scholar]
- 33.Block S. M., Blair D.F., and Berg H.C. (1989) Nature, 338, 514. [DOI] [PubMed] [Google Scholar]
- 34.Wang M.D., Yin H., Landick R., Gelles J., and Block S.M. (1997) Biophys. J., 72, 1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Yang A.H.J., Moore S.D., Schmidt B.S., Klug M., Lipson M., and Erickson D. (2000) Nature, 457, 71. [DOI] [PubMed] [Google Scholar]
- 36.Finer J.T., Simmons R.M., and Spudich J.A. (1994) Nature, 368, 113. [DOI] [PubMed] [Google Scholar]
- 37.Moffitt J.R., Chemla Y.R., Smith S.B., and Bustamante C. (2008) Ann. Rev. Chem., 77, 205. [DOI] [PubMed] [Google Scholar]
- 38.Osborne M.A., Balasubramanian S., Furey W.S., and Klenerman D. (1998) J. Phys. Chem. B, 102, 3160. [Google Scholar]
- 39.Maragò N.M., Bonaccorso F., Saija R., Privitera G., Gucciardi P.G., Iatì M.A., Calogero G., Jones P.H., Borghese F., Denti P., Nicolosi V., and Ferrari A.C. (2010) ACS Nano, 4, 7515. [DOI] [PubMed] [Google Scholar]
- 40.Reece P.J., Toe W.J., Wang F., Paiman S., Gao Q., Tan H.H., and Jagadish C. (2011) Nano Lett., 11, 2375. [DOI] [PubMed] [Google Scholar]
- 41.Gu M., and Morrish D. (2002) J. Appl. Phys., 91, 1606. [Google Scholar]
- 42.Yoshikawa H., Matsui T., and Masuhara H. (2004) Phys. Rev. E, 70, 061406. [DOI] [PubMed] [Google Scholar]
- 43.Hansen P. M., Bhatia V. K., Harrit N., and Oddershede L.B. (2005) Nano Lett., 5, 1937. [DOI] [PubMed] [Google Scholar]
- 44.Seol Y., Carpenter A.E., and Perkins T.T. (2006) Opt. Lett., 31, 2429. [DOI] [PubMed] [Google Scholar]
- 45.Bosanac L., Aabo T., Bendix P. M., and Oddershede L.B. (2008) Nano Lett., 8, 1486. [DOI] [PubMed] [Google Scholar]
- 46.Dienerowitz M., Mazilu M., and Dholakia K. (2008) J. Nanophotonics, 2, 1. [Google Scholar]
- 47.Guffey M.J., and Scherer N.F. (2010) Nano Lett., 10, 4301. [DOI] [PubMed] [Google Scholar]
- 48.Hajizadeh F., and Reihani S.N.S. (2010) Opt. Express, 18, 551. [DOI] [PubMed] [Google Scholar]
- 49.Uwada T., Sugiyama T., and Masuhara H. (2011) J. Photochem. Photobiol. A: Chemistry, 221, 187. [Google Scholar]
- 50.Harada Y., and Asakura T. (1996) Opt. Commun., 124, 529. [Google Scholar]
- 51.Juan M.L., Gordon R., Pang Y., Eftekhari F., and Quidant R. (2009) Nature Physics, 5, 915. [Google Scholar]
- 52.Pang Y., and Gordon R. (2011) Nano Lett., 11, 3763. [DOI] [PubMed] [Google Scholar]
- 53.Pang Y., and Gordon R. (2012) Nano Lett., 12, 402. [DOI] [PubMed] [Google Scholar]
- 54.Juan M.L., Righini M., and Quidant R. (2011) Nature Photonics, 5, 349. [Google Scholar]
- 55.Garetz B.A., Matic J., and Myerson A.S. (2002) Phys. Rev. Lett., 89, 175501. [DOI] [PubMed] [Google Scholar]
- 56.Matic J., Sun X., Garetz B.A., and Myerson A.S. (2005) Cryst. Growth Des., 5, 1565. [Google Scholar]
- 57.Pan L., Ishikawa A., and Tamai N. (2007) Phys. Rev. B, 75, 161305. [Google Scholar]
- 58.Sanz M., de Nalda R., Marco J.F., Izquierdo J.G., Banares L., and Castillejo M. (2010) J. Phys. Chem.C, 114, 4864. [Google Scholar]
- 59.Jiang Y., Narushima T., and Okamoto H. (2010) Nature Physics, 6, 1005. [Google Scholar]
- 60.Usman A.; Chiang W.-Y., and Masuhara H. (2012) J. Photochem. Photobiol. A: Chemistry, 234, 83. [Google Scholar]
- 61.Ashkin A. (1992) Biophys. J., 61, 569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Gordon J.P. (1973) Phys. Rev. A, 8, 14. [Google Scholar]
- 63.Davis L.W. (1979) Phys. Rev. A, 19, 1177. [Google Scholar]
- 64.Novotny L., and Hecht B. (2006) Principle of Nano-Optics, Cambridge Univ. Press. [Google Scholar]
- 65.Felgner H., Müller O., and Schliwa M. (1995) Appl. Opt., 34, 977. [DOI] [PubMed] [Google Scholar]
- 66.Wood T.A., Gleeson H.F., Dickinson M.R., and Wright A.J. (2004) Appl. Phys. Lett., 84, 4292. [Google Scholar]
- 67.Sasaki K., Tsukima M., and Masuhara H. (1997) Appl. Phys. Lett., 71, 37. [Google Scholar]
- 68.Chow T.H., Lee W.M., Tan K.M., Ng B.K., and Sheppard C.J.R. (2010) Appl. Phys. Lett., 97, 231113. [Google Scholar]
- 69.Jauffred L., Richardson A.C., and Oddershede L.B. (2008) Nano Lett., 8, 3376. [DOI] [PubMed] [Google Scholar]
- 70.Abbondanzieri E.A., Greenleaf W.J., Shaevitz J.W., Landick R., and Block S. M. (2005) Nature, 438, 460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Quidant R., and Girard C. (2008) Laser Photon. Rev., 2, 47. [Google Scholar]
- 72.Tsuboi Y., Shoji T., Kitamura N., Takase M., Murakoshi K., Misumoto Y., and Ishihara H. (2010) J. Phys. Chem. Lett., 1, 2327. [Google Scholar]
- 73.Stockman M. I. (2004) Phys. Rev. Lett., 93, 137404. [DOI] [PubMed] [Google Scholar]
- 74.Muhlschlegel P., Eisler H.-J., Martin O.J.F., Hecht B., and Pohl D.W. (2005) Science, 308, 1607. [DOI] [PubMed] [Google Scholar]
- 75.Schuck P.J., Fromm D.P., Sundaramurthy A., Kino G.S., and Moerner W.E. (2005) Phys. Rev. Lett., 94, 017402. [DOI] [PubMed] [Google Scholar]
- 76.Xu H., and Kall M. (2002) Phys. Rev. Lett., 89, 246802. [DOI] [PubMed] [Google Scholar]
- 77.Quidant R., Petrov D., and Badenes G. (2005) Opt. Lett., 30, 1009. [DOI] [PubMed] [Google Scholar]
- 78.Righini M., Ghenuche P., Cherukulappurath S., Myroshnychenko V., Garcia de Abajo F.J., and Quidant R. (2009) Nano Lett., 9, 3387. [DOI] [PubMed] [Google Scholar]
- 79.Garcia-Parajo M.F. (2008) Nature Photonics, 2, 201. [Google Scholar]
- 80.Roxworthy B.J., Ko K.D., Kumar A., Fung K.H., Chow E.K.C., Liu G.L., Fang N.X., and Toissaint K.C. Jr. (2012) Nano Lett., 12, 796. [DOI] [PubMed] [Google Scholar]
- 81.Kim S., Jin J., Kim Y.-J., Park I.-Y., Kim Y., and Kim S.-W. (2008) Nature, 453, 757. [DOI] [PubMed] [Google Scholar]
- 82.Rohrbach A., and Stelzer E.H.K. (2001) J. Opt. Soc. Am. A, 18, 839. [DOI] [PubMed] [Google Scholar]
- 83.Chaumet P.C., Rahmani A., and Nieto-Vesperinas M. (2002) Phys. Rev. Lett., 88, 123601. [DOI] [PubMed] [Google Scholar]
- 84.Werner D., Hashimoto S., and Uwada T. (2010) Langmuir, 26, 9956. [DOI] [PubMed] [Google Scholar]
- 85.Bahk S.-W., Rousseau P., Planchon T.A., Chvykov V., Kalintchenko G., Maksimchuk A., Mourou G.A., and Yanovsky V. (2005) Appl. Phys. B, 80, 823. [DOI] [PubMed] [Google Scholar]
- 86.Garetz B.A., Aber J.E., Goddard N.L., Young R.G., and Myerson A.S. (1996) Phys. Rev. Lett., 77, 3475. [DOI] [PubMed] [Google Scholar]
- 87.Tsunesada F., Iwai T., Watanabe T., Adachi H., Yoshimura M., Mori Y., and Sasaki T. (2002) J. Cryst. Growth, 237-239, 2104. [Google Scholar]
- 88.Adachi H., Takano K., Hosokawa Y., Inoue T., Mori Y., Matsumura H., Yoshimura M., Tsunaka Y., Morikawa M., Kanaya S., Masuhara H., Kai Y., and Sasaki T. (2003) Jpn. J. Appl. Phys., 42, L798. [Google Scholar]
- 89.Ambardekar A.A., and Li Y.-Q. (2005) Opt. Lett., 30, 1797. [DOI] [PubMed] [Google Scholar]
- 90.Agate B., Brown C.T.A., Sibbett W., and Dholakia K. (2004) Opt. Express, 12, 3011. [DOI] [PubMed] [Google Scholar]
- 91.Usman A., Chiang W.-Y., and Masuhara H. (2012) Proc. SPIE, 8458, 845833. [Google Scholar]
- 92.Wang L.-G., and Zhao C.-L. (2007) Opt. Express, 15, 10615. [DOI] [PubMed] [Google Scholar]
- 93.Wang L.-G., and Chai H.-S. (2011) Opt. Express, 19, 14389. [DOI] [PubMed] [Google Scholar]
- 94.Zemánek P., Jonáš A., Šrámek L., and Liška M. (1999) Opt. Lett., 24, 1448. [DOI] [PubMed] [Google Scholar]
- 95.Bustamante C., Chemla Y.R., Forde N.R., and Izhaky D. (2004) Ann. Rev. Chem., 73, 705. [DOI] [PubMed] [Google Scholar]
- 96.Dholakia K., and Zemánek P. (2010) Rev. Mod. Phys., 82, 167. [Google Scholar]
- 97.Juodkazis S., Mukai N., Wakaki R., Yamaguchi A., Matsuo S., and Misawa H. (2000) Nature, 408, 178. [DOI] [PubMed] [Google Scholar]
- 98.Ito S., Sugiyama T., Toitani N., Katayama G., and Miyasaka H. (2007) J. Phys. Chem. B, 111, 2365. [DOI] [PubMed] [Google Scholar]
- 99.Denk W., Strickler J.H., and Webb W.W. (1990) Science, 248, 73. [DOI] [PubMed] [Google Scholar]
- 100.Liang H., Wright W.H., Rieder C.L., Salmon E.D., Profeta G., Andrews J., Liu Y., Sonek G.J., and Berns M.W. (1994) Exp. Cell Res., 213, 308. [DOI] [PubMed] [Google Scholar]
- 101.König K., Riemann I., Fischer P., and Halbhuber K.J. (1999) Cell. Mol. Biol., 45, 195. [PubMed] [Google Scholar]
- 102.Sato S., Harada Y., and Waseda Y. (1994) Opt. Lett., 19, 1807. [DOI] [PubMed] [Google Scholar]
- 103.Furukawa H., and Yamaguchi I. (1998) Opt. Lett., 23, 216. [DOI] [PubMed] [Google Scholar]
- 104.Lippitz M., van Dijk M.A., and Orrit M. (2005) Nano Lett., 5, 799. [DOI] [PubMed] [Google Scholar]
- 105.Ohlinger A., Nedev S., Lutich A.A., and Feldmann J. (2011) Nano Lett., 11, 1770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Messina E., Cavallaro E., Cacciola A., Iatì M.A., Gucciardi P.G., Borghese F., Denti P., Saija R., Compagnini G., Meneghetti M., Amendola V., and Maragò O.M. (2011) ACSNano, 5, 905. [DOI] [PubMed] [Google Scholar]
- 107.Mansuripur M. (2004) Opt. Express, 12, 5375. [DOI] [PubMed] [Google Scholar]
- 108.Iida T., and Ishihara H. (2008) Phys. Rev. B, 77, 245319. [Google Scholar]
- 109.Kudo T., and Ishihara H. (2011) Phys. Status Solidi C, 8, 66. [Google Scholar]
- 110.Kudo T., and Ishihara H. (2012) Phys. Rev. Lett., 109, 087402. [DOI] [PubMed] [Google Scholar]
- 111.Hosokawa C., Yoshikawa H., and Masuhara H. (2006) Jpn. J. Appl. Phys., 45, L453. [Google Scholar]