Abstract
Higher eukaryotic development has traditionally been considered a unidirectional and irreversible process. Beginning in 2006, with Yamanaka and colleagues’ report on the first successful generation of induced pluripotent stem cells (iPSCs), the field of stem cell biology has experienced perhaps unprecedented rates of growth and discovery. This review is a summary of recent progress in the field of reprogramming. Advances in small moleculeaided reprogramming and transdifferentiation, currently two of the most intensely studied areas of stem cell biology, are emphasized. The field has collectively covered much ground in the past five years, dramatically increasing reprogramming efficiency and successfully eliminating the need for permanent genetic modification, perhaps the biggest obstacle to eventual clinical use of this strategy. Simultaneously, various transdifferentiation strategies are rapidly expanding the scope of cellular plasticity, interconverting unrelated cell types with relative technical ease. While significant challenges remain-such as accomplishing small molecule-only “chemical reprogramming” or ensuring the functional and epigenetic equivalency of reprogrammed or transdifferentiated cells–there is no shortage of enthusiasm in the field.
Keywords: induced pluripotency, small molecules, cell fate plasticity, transdifferentiation, direct conversion
Full Text
The Full Text of this article is available as a PDF (250.4 KB).
References
- 1.Evans M.J., and Kaufman M.H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156. [DOI] [PubMed] [Google Scholar]
- 2.Kiortsis V., Uehlinger V., and Droin A. (1959) Quantitative study of tail regeneration with or without spinal cord in the salamander larva. Experientia, 15, 311–313. [DOI] [PubMed] [Google Scholar]
- 3.Stadtfeld M., and Hochedlinger K. (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev., 24, 2239–2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Raz R., Lee C.K., Cannizzaro L.A., d'Eustachio P., and Levy D.E. (1999) Essential role of STAT3 for embryonic stem cell pluripotency. Proc. Natl. Acad. Sci. USA, 96, 2846–2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Pyle A.D., Donovan P.J., and Lock L.F. (2004) Chipping away at ‘stemness’. Genome Biol., 5, 235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Takahashi K., and Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676. [DOI] [PubMed] [Google Scholar]
- 7.Welstead G.G., Schorderet P., and Boyer L.A. (2008) The reprogramming language of pluripotency. Curr. Opin. Genet. Dev., 18, 123–129. [DOI] [PubMed] [Google Scholar]
- 8.Sridharan R., Tchieu J., Mason M.J., Yachechko R., Kuoy E., Horvath S., Zhou Q., and Plath K. (2009) Role of the murine reprogramming factors in the induction of pluripotency. Cell, 136, 364–377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Bibikova M., Laurent L.C., Ren B., Loring J.F., and Fan J.B. (2008) Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell, 2, 123–134. [DOI] [PubMed] [Google Scholar]
- 10.Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R. et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920. [DOI] [PubMed] [Google Scholar]
- 11.Silva J., Nichols J., Theunissen T.W., Guo G., van Oosten A.L., Barrandon O., Wray J., Yamanaka S., Chambers I., and Smith A. (2009) Nanog is the gateway to the pluripotent ground state. Cell, 138, 722–737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Peng S., Chen L.L., Lei X.X., Yang L., Lin H., Carmichael G.G., and Huang Y. (2011) Genome-wide studies reveal that lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells, 29, 496–504. [DOI] [PubMed] [Google Scholar]
- 13.Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., and Yamanaka S. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 26, 101–106. [DOI] [PubMed] [Google Scholar]
- 14.Wernig M., Meissner A., Cassady J.P., and Jaenisch R. (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2, 10–12. [DOI] [PubMed] [Google Scholar]
- 15.Eminli S., Foudi A., Stadtfeld M., Maherali N., Ahfeldt T., Mostoslavsky G., Hock H., and Hochedlinger K. (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet., 41, 968–976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kim J.B., Sebastiano V., Wu G., Arauzo-Bravo M.J., Sasse P., Gentile L., Ko K., Ruau D., Ehrich M., van den Boom D. et al. (2009) Oct4-induced pluripotency in adult neural stem cells. Cell, 136, 411–419. [DOI] [PubMed] [Google Scholar]
- 17.Gaspar-Maia A., Alajem A., Meshorer E., and Ramalho-Santos M. (2011) Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol., 12, 36–47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E., and Melton D.A. (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol., 26, 795–797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Meissner A. (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat. Biotechnol., 28, 1079–1088. [DOI] [PubMed] [Google Scholar]
- 20.Bernstein B.E., Meissner A., and Lander E.S. (2007) The mammalian epigenome. Cell, 128, 669–681. [DOI] [PubMed] [Google Scholar]
- 21.Epsztejn-Litman S., Feldman N., Abu-Remaileh M., Shufaro Y., Gerson A., Ueda J., Deplus R., Fuks F., Shinkai Y., Cedar H. et al. (2008) De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol., 15, 1176–1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Koche R.P., Smith Z.D., Adli M., Gu H., Ku M., Gnirke A., Bernstein B.E., and Meissner A. (2011) Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell, 8, 96–105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Hockemeyer D., Soldner F., Cook E.G., Gao Q., Mitalipova M., and Jaenisch R. (2008) A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell, 3, 346–353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Stadtfeld M., Maherali N., Breault D.T., and Hochedlinger K. (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2, 230–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Smith Z.D., Nachman I., Regev A., and Meissner A. (2010) Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol., 28, 521–526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Hanna J., Saha K., Pando B., van Zon J., Lengner C.J., Creyghton M.P., van Oudenaarden A., and Jaenisch R. (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462, 595–601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Mali P., Chou B.K., Yen J., Ye Z., Zou J., Dowey S., Brodsky R.A., Ohm J.E., Yu W., Baylin S.B. et al. (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 28, 713–720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Shi Y., Desponts C., Do J.T., Hahm H.S., Scholer H.R., and Ding S. (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3, 568–574. [DOI] [PubMed] [Google Scholar]
- 29.Shi Y., Do J.T., Desponts C., Hahm H.S., Scholer H.R., and Ding S. (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2, 525–528. [DOI] [PubMed] [Google Scholar]
- 30.Huangfu D., Osafune K., Maehr R., Guo W., Eijkelenboom A., Chen S., Muhlestein W., and Melton D.A. (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol., 26, 1269–1275. [DOI] [PubMed] [Google Scholar]
- 31.Li W., Zhou H., Abujarour R., Zhu S., Young Joo J., Lin T., Hao E., Scholer H.R., Hayek A., and Ding S. (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27, 2992–3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Ichida J.K., Blanchard J., Lam K., Son E.Y., Chung J.E., Egli D., Loh K.M., Carter A.C., Di Giorgio F.P., Koszka K. et al. (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5, 491–503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Zhou H., and Ding S. (2010) Evolution of induced pluripotent stem cell technology. Curr. Opin. Hematol., 17, 276–280. [DOI] [PubMed] [Google Scholar]
- 34.Maherali N., and Hochedlinger K. (2009) Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol., 19, 1718–1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Lyssiotis C.A., Foreman R.K., Staerk J., Garcia M., Mathur D., Markoulaki S., Hanna J., Lairson L.L., Charette B.D., Bouchez L.C. et al. (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl. Acad. Sci. USA, 106, 8912–8917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Lin T., Ambasudhan R., Yuan X., Li W., Hilcove S., Abujarour R., Lin X., Hahm H.S., Hao E., Hayek A. et al. (2009) A chemical platform for improved induction of human iPSCs. Nature Meth., 6, 805–808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Zhu S., Li W., Zhou H., Wei W., Ambasudhan R., Lin T., Kim J., Zhang K., and Ding S. (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7, 651–655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Wei C.L., Miura T., Robson P., Lim S.K., Xu X.Q., Lee M.Y., Gupta S., Stanton L., Luo Y., Schmitt J. et al. (2005) Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells, 23, 166–185. [DOI] [PubMed] [Google Scholar]
- 39.Ohtsuka S., and Dalton S. (2008) Molecular and biological properties of pluripotent embryonic stem cells. Gene Ther., 15, 74–81. [DOI] [PubMed] [Google Scholar]
- 40.Guo G., and Smith A. (2010) A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development, 137, 3185–3192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Guo G., Yang J., Nichols J., Hall J.S., Eyres I., Mansfield W., and Smith A. (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development, 136, 1063–1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Zhou H., Li W., Zhu S., Joo J.Y., Do J.T., Xiong W., Kim J.B., Zhang K., Scholer H.R., and Ding S. (2010) Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. J. Biol. Chem. ??? [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Li W., Wei W., Zhu S., Zhu J., Shi Y., Lin T., Hao E., Hayek A., Deng H., and Ding S. (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4, 16–19. [DOI] [PubMed] [Google Scholar]
- 44.Xu Y., Zhu X., Hahm H.S., Wei W., Hao E., Hayek A., and Ding S. (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc. Natl. Acad. Sci. USA, 107, 8129–8134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Armstrong L., Hughes O., Yung S., Hyslop L., Stewart R., Wappler I., Peters H., Walter T., Stojkovic P., Evans J. et al. (2006) The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet., 15, 1894–1913. [DOI] [PubMed] [Google Scholar]
- 46.Paling N.R., Wheadon H., Bone H.K., and Welham M.J. (2004) Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J. Biol. Chem., 279, 48063–48070. [DOI] [PubMed] [Google Scholar]
- 47.Burdon T., Stracey C., Chambers I., Nichols J., and Smith A. (1999) Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol., 210, 30–43. [DOI] [PubMed] [Google Scholar]
- 48.Hanna J., Cheng A.W., Saha K., Kim J., Lengner C.J., Soldner F., Cassady J.P., Muffat J., Carey B.W., and Jaenisch R. (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. USA, 107, 9222–9227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Tapscott S.J., Davis R.L., Thayer M.J., Cheng P.F., Weintraub H., and Lassar A.B. (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science, 242, 405–411. [DOI] [PubMed] [Google Scholar]
- 50.Graf T. (2002) Differentiation plasticity of hematopoietic cells. Blood, 99, 3089–3101. [DOI] [PubMed] [Google Scholar]
- 51.Vierbuchen T., Ostermeier A., Pang Z.P., Kokubu Y., Sudhof T.C., and Wernig M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Ieda M., Fu J.D., Delgado-Olguin P., Vedantham V., Hayashi Y., Bruneau B.G., and Srivastava D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Efe J.A., Hilcove S., Kim J., Zhou H., Ouyang K., Wang G., Chen J., and Ding S. (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol., 13, 215–222. [DOI] [PubMed] [Google Scholar]
- 54.Qyang Y., Martin-Puig S., Chiravuri M., Chen S., Xu H., Bu L., Jiang X., Lin L., Granger A., Moretti A. et al. (2007) The renewal and differentiation of Isl1 + cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell, 1, 165–179. [DOI] [PubMed] [Google Scholar]
- 55.Lister R., Pelizzola M., Kida Y.S., Hawkins R.D., Nery J.R., Hon G., Antosiewicz-Bourget J., O'Malley R., Castanon R., Klugman S. et al. (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471, 68–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Kim K., Doi A., Wen B., Ng K., Zhao R., Cahan P., Kim J., Aryee M.J., Ji H., Ehrlich L.I. et al. (2010) Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Li W., Zhou H., Abujarour R., Zhu S., Joo J.Y., Lin T., Hao E., Scholer H.R., Hayek A., and Ding S. (2009) Generation of human induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27, 2992–3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Ichida J.K., Blanchard J., Lam K., Son E.Y., Chung J.E., Egli D., Loh K.M., Carter A.C., Di Giorgio F.P., Koszka K. et al. (2009) A small-molecule inhibitor of Tgf-beta signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell, 5(5), 491–503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Li Y., Zhang Q., Yin X., Yang W., Du Y., Hou P., Ge J., Liu C., Zhang W., Zhang X. et al. (2011) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell. Res., 21, 196–204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Yuan X., Wan H., Zhao X., Zhu S., Zhou Q., and Ding S. (2011) Brief report: combined chemical treatment enables oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells, 29, 549–553. [DOI] [PubMed] [Google Scholar]
- 61.Stadtfeld M., Nagaya M., Utikal J., Weir G., and Hochedlinger K. (2008) Induced pluripotent stem cells generated without viral integration. Science, 322, 945–949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Woltjen K., Michael I.P., Mohseni P., Desai R., Mileikovsky M., Hamalainen R., Cowling R., Wang W., Liu P., Gertsenstein M. et al. (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Okita K., Nakagawa M., Hyenjong H., Ichisaka T., and Yamanaka S. (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953. [DOI] [PubMed] [Google Scholar]
- 64.Zhou H., Wu S., Joo J.Y., Zhu S., Han D.W., Lin T., Trauger S., Bien G., Yao S., Zhu Y. et al. (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Kim J.B., Zaehres H., Wu G., Gentile L., Ko K., Sebastiano V., Arauzo-Bravo M.J., Ruau D., Han D.W., Zenke M. et al. (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454, 646–650. [DOI] [PubMed] [Google Scholar]
- 66.Hanna J., Markoulaki S., Schorderet P., Carey B.W., Beard C., Wernig M., Creyghton M.P., Steine E.J., Cassady J.P., Foreman R. et al. (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133, 250–264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Sugii S., Kida Y., Kawamura T., Suzuki J., Vassena R., Yin Y.Q., Lutz M.K., Berggren W.T., Izpisua Belmonte J.C., and Evans R.M. (2010) Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc. Natl. Acad. Sci. USA, 107, 3558–3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Tsai S.Y., Clavel C., Kim S., Ang Y.S., Grisanti L., Lee D.F., Kelley K., and Rendl M. (2010) Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells, 28, 221–228. [DOI] [PubMed] [Google Scholar]
- 69.Stadtfeld M., Brennand K., and Hochedlinger K. (2008) Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr. Biol., 18, 890–894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Utikal J., Maherali N., Kulalert W., and Hochedlinger K. (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell Sci., 122, 3502–3510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., and Yamanaka S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872. [DOI] [PubMed] [Google Scholar]
- 72.Kaji K., Norrby K., Paca A., Mileikovsky M., Mohseni P., and Woltjen K. (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458, 771–775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R., Slukvin II, and Thomson J.A. (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Kim D., Kim C.H., Moon J.I., Chung Y.G., Chang M.Y., Han B.S., Ko S., Yang E., Cha K.Y., Lanza R. et al. (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Warren L., Manos P.D., Ahfeldt T., Loh Y.H., Li H., Lau F., Ebina W., Mandal P.K., Smith Z.D., Meissner A. et al. (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Maherali N., Ahfeldt T., Rigamonti A., Utikal J., Cowan C., and Hochedlinger K. (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 3, 340–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Kim J.B., Greber B., Arauzo-Bravo M.J., Meyer J., Park K.I., Zaehres H., and Scholer H.R. (2009) Direct reprogramming of human neural stem cells by OCT4. Nature, 461, 649–643. [DOI] [PubMed] [Google Scholar]
- 78.Aasen T., Raya A., Barrero M.J., Garreta E., Consiglio A., Gonzalez F., Vassena R., Bilic J., Pekarik V., Tiscornia G. et al. (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol., 26, 1276–1284. [DOI] [PubMed] [Google Scholar]
- 79.Haase A., Olmer R., Schwanke K., Wunderlich S., Merkert S., Hess C., Zweigerdt R., Gruh I., Meyer J., Wagner S. et al. (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5, 434–441. [DOI] [PubMed] [Google Scholar]
- 80.Giorgetti A., Montserrat N., Aasen T., Gonzalez F., Rodriguez-Piza I., Vassena R., Raya A., Boue S., Barrero M.J., Corbella B.A. et al. (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 5, 353–357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Sun N., Panetta N.J., Gupta D.M., Wilson K.D., Lee A., Jia F., Hu S., Cherry A.M., Robbins R.C., Longaker M.T. et al. (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. USA, 106, 15720–15725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Aoki T., Ohnishi H., Oda Y., Tadokoro M., Sasao M., Kato H., Hattori K., and Ohgushi H. (2010) Generation of induced pluripotent stem cells from human adipose-derived stem cells without c-MYC. Tiss. Eng. Part A, 16, 2197–2206. [DOI] [PubMed] [Google Scholar]
- 83.Liu H., Ye Z., Kim Y., Sharkis S., and Jang Y.Y. (2010) Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 51, 1810–1819. [DOI] [PMC free article] [PubMed] [Google Scholar]