Skip to main content
Science Progress logoLink to Science Progress
. 2010 Mar 1;93(1):1–6. doi: 10.3184/003685009X12605492662844

An Overview of the Processes Shaping Protein Evolution

Roy D Sleator 1,
PMCID: PMC10365403  PMID: 20222353

Abstract

From a comparatively small number of protein structural domains a staggering array of structural variants has evolved which has, in turn, facilitated an expanse of functional derivatives. Herein I review the primary mechanisms which have contributed to the vastness of our existing, and expanding, protein repertoires.

Keywords: evolution, protein domains, gene duplication, divergence, combination, circular permutation

Full Text

The Full Text of this article is available as a PDF (55.1 KB).

References

  • 1.Chothia C., and Gough J. (2009) Genomic and structural aspects of protein evolution. Biochem. J., 419, 15–28. [DOI] [PubMed] [Google Scholar]
  • 2.Brenner S.E., Hubbard T., Murzin A., and Chothia C. (1995) Gene duplications in H. influenzae. Nature, 378, 140. [DOI] [PubMed] [Google Scholar]
  • 3.Teichmann S.A., Park J., and Chothia C. (1998) Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. Proc. Natl. Acad. Sci. USA, 95, 14658–14663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Volff J.N., and Brosius J. (2007) Modern genomes with retro-look: retro-transposed elements, retroposition and the origin of new genes. Genome Dyn., 3, 175–190. [DOI] [PubMed] [Google Scholar]
  • 5.Wilson D., Pethica R., Zhou Y., Talbot C., Vogel C., Madera M., Chothia C., and Gough J. (2009) SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucl. Acids Res., 37, D380–386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Blanchetot A., Wilson V., Wood D., and Jeffreys A.J. (1983) The seal myoglobin gene: an unusually long globin gene. Nature, 301, 732–734. [DOI] [PubMed] [Google Scholar]
  • 7.Moore A.D., Bjorklund A.K., Ekman D., Bornberg-Bauer E., and Elofsson A. (2008) Arrangements in the modular evolution of proteins. Trends Biochem. Sci., 33, 444–451. [DOI] [PubMed] [Google Scholar]
  • 8.Longhi S., Czjzek M., Lamzin V., Nicolas A., and Cambillau C. (1997) Atomic resolution (1.0 A) crystal structure of Fusarium solani cutinase: stereo-chemical analysis. J. Mol. Biol., 268, 779–799. [DOI] [PubMed] [Google Scholar]
  • 9.Chen J.C., Miercke L.J., Krucinski J., Starr J.R., Saenz G., Wang X., Spilburg C.A., Lange L.G., Ellsworth J.L., and Stroud R.M. (1998) Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structural features involved in lipase activation. Biochemistry, 37, 5107–5117. [DOI] [PubMed] [Google Scholar]
  • 10.Gerstein M., Sonnhammer E.L., and Chothia C. (1994) Volume changes in protein evolution. J. Mol. Biol., 236, 1067–1078. [DOI] [PubMed] [Google Scholar]
  • 11.Chothia C., and Lesk A.M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J., 5, 823–826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Kawashima T., Kawashima S., Tanaka C., Murai M., Yoneda M., Putnum N.H., Rokhsar D.S., Kanehisa M., Satoh N., and Wada H. (2009) Domain shuffling and the evolution of vertebrates. Genome Res. (in press). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Vogel C., and Morea V. (2006) Duplication, divergence and formation of novel protein topologies. Bioessays, 28, 973–978. [DOI] [PubMed] [Google Scholar]
  • 14.Lindqvist Y., and Schneider G. (1997) Circular permutations of natural protein sequences: structural evidence. Curr. Opin. Struct. Biol., 7, 422–427. [DOI] [PubMed] [Google Scholar]
  • 15.Lo W.C., Lee C.C., Lee C.Y., and Lyu P.C. (2009) CPDB: a database of circular permutation in proteins. Nucl. Acids Res., 37, D328–332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Heinemann U., Ay J., Gaiser O., Muller J.J., and Ponnuswamy M.N. (1996) Enzymology and folding of natural and engineered bacterial beta-glucanases studied by X-ray crystallography. Biol. Chem., 377, 447–454. [PubMed] [Google Scholar]
  • 17.Chu V., Freitag S., Le Trong I., Stenkamp R.E., and Stayton P.S. (1998) Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system. Protein Sci., 7, 848–859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Todd A.E., Orengo C.A., and Thornton J.M. (2001) Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol., 307, 1113–1143. [DOI] [PubMed] [Google Scholar]
  • 19.Wyckoff T.J., and Raetz C.R. (1999) The active site of Escherichia coli UDP-N-acetylglucosamine acyltransferase. Chemical modification and site-directed mutagenesis. J. Biol. Chem., 274, 27047–27055. [DOI] [PubMed] [Google Scholar]
  • 20.Yoon S.I., Jones B.C., Logsdon N.J., and Walter M.R. (2005) Same structure, different function crystal structure of the Epstein-Barr virus IL-10 bound to the soluble IL-10R1 chain. Structure, 13, 551–564. [DOI] [PubMed] [Google Scholar]
  • 22.Apic G., Gough J., and Teichmann S.A. (2001) Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol., 310, 311–325. [DOI] [PubMed] [Google Scholar]
  • 23.Chothia C., Gough J., Vogel C., and Teichmann S.A. (2003) Evolution of the protein repertoire. Science, 300, 1701–1703. [DOI] [PubMed] [Google Scholar]
  • 24.Sleator R.D., Shortall C., and Hill C. (2008) Metagenomics. Lett. Appl. Microbiol., 47, 361–366. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES