Skip to main content
Science Progress logoLink to Science Progress
. 2014 Sep 1;97(3):197–214. doi: 10.3184/003685014X14049173153889

Dengue Pathogenesis: A Disease Driven by the Host Response

Byron EE Martina 1,
PMCID: PMC10365407  PMID: 25549406

Abstract

Dengue viruses cause mild disease in the majority of infected individuals. In most cases, the disease is characterised by fever, headache, pain behind the eyes, muscle ache, joint pains, vomiting and diarrhoea. In a low percentage of patients, bleeding and loss of plasma (haemorrhage and plasma leakage) may occur. The hyper-permeability syndrome results in plasma leakage and, if the compensatory mechanisms of the body fail to control the plasma leakage or if medical intervention is late, shock may set in. Profound shock will subsequently lead to acidic blood (metabolic acidosis) and development of disseminated intravascular coagulation (DIC). During DIC multiple micro thromboses occur, leading to organ failure. The mechanisms governing pathogenesis of these forms of severe disease are not clear. High amounts of virus in the blood are believed to cause vascular fragility which, together with infection of endothelial cells and high levels of cytokines and other soluble mediators, may result in bleeding. In the absence of a correlation between the amount of virus in the blood and disease severity, it is likely that response to infection is an important cause of disease. The aberrant immune response to infection is believed to result in a cytokine storm, defined as an imbalance between cytokines driving an inflammation (pro-inflammatory) and those silencing an inflammation (anti-inflammatory). Several lines of evidence indicate that displacement of viral genotype and host genetic background are key factors driving the production of a cytokine storm. Several cytokines are known to induce apoptosis, a form of cell suicide (cause of haemorrhage), and/or affect adherens junctions (cause permeability) in vitro. Whether these cytokines may have such effects in vivo remains to be established.

Keywords: dengue pathogenesis, severe disease, host response, genotype, cytokine storm

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

References

  • 1.Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L. et al. , (2013) The global distribution and burden of dengue. Nature, 496, 504–507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Gibbons R.V., and Vaughn D.W. (2002) Dengue: an escalating problem. BMJ, 324, 1563–1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Murray N.E., Quam M.B., and Wilder-Smith A. (2013) Epidemiology of dengue: past, present and future prospects. Clin. Epidemiol., 5, 299–309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Richards S.L., Anderson S.L., and Alto B.W. (2012) Vector competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for dengue virus in the Florida Keys. J. Med. Entomol., 49, 942–946. [DOI] [PubMed] [Google Scholar]
  • 5.Vega-Rua A., Zouache K., Caro V., Diancourt L., Delaunay P., Grandadam M., and Failloux A.B. (2013) High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France. PLoS One, 8, e59716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Junjhon J., Edwards T.J., Utaipat U., Bowman V.D., Holdaway H.A., Zhang W. et al. (2010) Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J. Virol., 84, 8353–8358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Smit J.M., Moesker B., Rodenhuis-Zybert I., and Wilschut J. (2011) Flavivirus cell entry and membrane fusion. Viruses, 3, 160–171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kwan W.H., Helt A.M., Maranon C., Barbaroux J.B., Hosmalin A., Harris E. et al. (2005) Dendritic cell precursors are permissive to dengue virus and human immunodeficiency virus infection. J. Virol., 79, 7291–7299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kwan W.H., Navarro-Sanchez E., Dumortier H., Decossas M., Vachon H., dos Santos F.B. et al. (2008) Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth. PLoS Negl. Trop. Dis., 2, e311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lin Y.W., Wang K.J., Lei H.Y., Lin Y.S., Yeh T.M., Liu H.S. et al. (2002) Virus replication and cytokine production in dengue virus-infected human B lymphocytes. J. Virol., 76, 12242–12249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Sun J., Luo S., Lin J., Chen J., Hou J., Fu T. et al. (2012) Inapparent infection during an outbreak of dengue fever in Southeastern China. Viral Immunol., 25, 456–460. [DOI] [PubMed] [Google Scholar]
  • 12.Huy N.T., Van Giang T., Thuy D.H., Kikuchi M., Hien T.T., Zamora J., and Hirayama K. (2013) Factors associated with dengue shock syndrome: a systematic review and meta-analysis. PLoS Negl Trop. Dis., 7, e2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Ho T.S., Wang S.M., Lin Y.S., and Liu C.C. (2013) Clinical and laboratory predictive markers for acute dengue infection. J. Biomed. Sci., 20, 75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kalayanarooj S., Vaughn D.W., Nimmannitya S., Green S., Suntayakorn S., Kunentrasai N. et al. (1997) Early clinical and laboratory indicators of acute dengue illness. J. Infect. Dis., 176, 313–321. [DOI] [PubMed] [Google Scholar]
  • 15.Odreman-Macchioli M., Vielma S., Atchley D., Comach G., Ramirez A., Perez S. et al. (2013) Analysis of real time PCR amplification efficiencies from three genomic region of dengue virus. Invest. Clin., 54, 5–19. [PubMed] [Google Scholar]
  • 16.Teoh B.T., Sam S.S., Tan K.K., Johari J., Danlami M.B., Hooi P.S. et al. (2013) Detection of dengue viruses using reverse transcription-loop-mediated isothermal amplification. BMC Infect. Dis., 13, 387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Waggoner J.J., Abeynayake J., Sahoo M.K., Gresh L., Tellez Y., Gonzalez K. et al. (2013) Development of an internally controlled real-time reverse transcriptase PCR assay for pan-dengue virus detection and comparison of four molecular dengue virus detection assays. J. Clin. Microbiol., 51, 2172–2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Waggoner J.J., Abeynayake J., Sahoo M.K., Gresh L., Tellez Y., Gonzalez K. et al. (2013) Single-reaction, multiplex, real-time rt-PCR for the detection, quantitation, and serotyping of dengue viruses. PLoS Negl. Trop. Dis., 7, e2116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Santiago G.A., Vergne E., Quiles Y., Cosme J., Vazquez J., Medina J.F. et al. (2013) Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop. Dis., 7, e2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.De La Cruz Hernandez S.I., Flores-Aguilar H., Gonzalez-Mateos S., Lopez-Martinez I., Ortiz-Navarrete V., Ludert J.E., and Del Angel R.M. (2013) Viral load in patients infected with dengue is modulated by the presence of anti-dengue IgM antibodies. J. Clin. Virol., 58, 258–261. [DOI] [PubMed] [Google Scholar]
  • 21.Moi M.L., Omatsu T., Tajima S., Lim C.K., Kotaki A., Ikeda M. et al. (2013) Detection of dengue virus nonstructural protein 1 (NS1) by using ELISA as a useful laboratory diagnostic method for dengue virus infection of international travelers. J. Travel Med., 20, 185–193. [DOI] [PubMed] [Google Scholar]
  • 22.Lima Mda R., Nogueira R.M., Schatzmayr H.G., and dos Santos F.B. (2010) Comparison of three commercially available dengue NS1 antigen capture assays for acute diagnosis of dengue in Brazil. PLoS Negl. Trop. Dis., 4, e738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Duong V., Ly S., Lorn Try P., Tuiskunen A., Ong S., Chroeung N. et al. (2011) Clinical and virological factors influencing the performance of a NS1 antigen-capture assay and potential use as a marker of dengue disease severity. PLoS Negl. Trop. Dis., 5, e1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Vazquez S., Ruiz D., Barrero R., Ramirez R., Calzada N., del Rosario Pena B. et al. (2010) Kinetics of dengue virus NS1 protein in dengue 4-confirmed adult patients. Diagn. Microbiol. Infect. Dis., 68, 46–49. [DOI] [PubMed] [Google Scholar]
  • 25.Prince H.E., and Matud J.L. (2011) Estimation of dengue virus IgM persistence using regression analysis. Clin. Vaccine Immunol., 18, 2183–2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Puschnik A., Lau L., Cromwell E.A., Balmaseda A., Zompi S., and Harris E. (2013) Correlation between dengue-specific neutralising antibodies and serum avidity in primary and secondary dengue virus 3 natural infections in humans. PLoS Negl. Trop. Dis., 7, e2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Namekar M., Ellis E.M., O'Connell M., Elm J., Gurary A., Park S.Y. et al. (2013) Evaluation of a new commercially available immunoglobulin M capture enzyme-linked immunosorbent assay for diagnosis of dengue virus infection. J. Clin. Microbiol., 51, 3102–3106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Pan-ngum W., Blacksell S.D., Lubell Y., Pukrittayakamee S., Bailey M.S., de Silva H.J. et al. (2013) Estimating the true accuracy of diagnostic tests for dengue infection using Bayesian latent class models. PLoS One, 8, e50765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Blacksell S.D., Jarman R.G., Gibbons R.V., Tanganuchitcharnchai A., Mammen M.P. Jr., Nisalak A. et al. (2012) Comparison of seven commercial antigen and antibody enzyme-linked immunosorbent assays for detection of acute dengue infection. Clin. Vaccine Immunol., 19, 804–810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Rico-Hesse R. (2003) Microevolution and virulence of dengue viruses. Adv. Virus Res., 59, 315–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Rico-Hesse R. (1990) Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology, 174, 479–493. [DOI] [PubMed] [Google Scholar]
  • 32.Alfonso H.L., Amarilla A.A., Goncalves P.F., Barros M.T., de Almeida F.T., Silva T.R. et al. (2012) Phylogenetic relationship of dengue virus type 3 isolated in Brazil and Paraguay and global evolutionary divergence dynamics. Virol. J., 9, 124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Cologna R., Armstrong P.M., and Rico-Hesse R. (2005) Selection for virulent dengue viruses occurs in humans and mosquitoes. J. Virol., 79, 853–859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Sharp T.M., Hunsperger E., Santiago G.A., Munoz-Jordan J.L., Santiago L.M., Rivera A. et al. (2013) Virus-specific differences in rates of disease during the 2010 Dengue epidemic in Puerto Rico. PLoS Negl. Trop. Dis., 7, e2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Cruz C.D., Forshey B.M., Juarez D.S., Guevara C., Leguia M., Kochel T.J., and Halsey E.S. (2013) Molecular epidemiology of American/Asian genotype DENV-2 in Peru. Infect. Genet. Evol., 18, 220–228. [DOI] [PubMed] [Google Scholar]
  • 36.Halsey E.S., Marks M.A., Gotuzzo E., Fiestas V., Suarez L., Vargas J. et al. (2012) Correlation of serotype-specific dengue virus infection with clinical manifestations. PLoS Negl. Trop. Dis., 6, e1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Barcelos Figueiredo L., Batista Cecilio A., Portela Ferreira G., Paiva Drumond B., Germano de Oliveira J., Bonjardim C.A. et al. (2008) Dengue virus 3 genotype 1 associated with dengue fever and dengue haemorrhagic fever, Brazil. Emerg. Infect. Dis., 14, 314–316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Rico-Hesse R., Harrison L.M., Salas R.A., Tovar D., Nisalak A., Ramos C. et al. (1997) Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology, 230, 244–251. [DOI] [PubMed] [Google Scholar]
  • 39.Teoh B.T., Sam S.S., Tan K.K., Johari J., Shu M.H., Danlami M.B. et al. (2013) Dengue virus type 1 clade replacement in recurring homotypic outbreaks. BMC Evol Biol., 13, 213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.OhAinle M., Balmaseda A., Macalalad A.R., Tellez Y., Zody M.C., Saborio S. et al. (2011) Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci. Transl. Med., 3, 114ra128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Rico-Hesse R. (2010) Dengue virus virulence and transmission determinants. Curr. Top. Microbiol. Immunol., 338, 45–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Tuiskunen A., Monteil V., Plumet S., Boubis L., Wahlstrom M., Duong V. et al. (2011) Phenotypic and genotypic characterisation of dengue virus isolates differentiates dengue fever and dengue haemorrhagic fever from dengue shock syndrome. Arch. Virol., 156, 2023–2032. [DOI] [PubMed] [Google Scholar]
  • 43.Tuiskunen A., Wahlstrom M., Bergstrom J., Buchy P., Leparc-Goffart I., and Lundkvist A. (2011) Phenotypic characterisation of patient dengue virus isolates in BALB/c mice differentiates dengue fever and dengue haemorrhagic fever from dengue shock syndrome. Virol. J., 8, 398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Edgil D., Diamond M.S., Holden K.L., Paranjape S.M., and Harris E. (2003) Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. Virology, 317, 275–290. [DOI] [PubMed] [Google Scholar]
  • 45.Ubol S., Chareonsirisuthigul T., Kasisith J., and Klungthong C. (2008) Clinical isolates of dengue virus with distinctive susceptibility to nitric oxide radical induce differential gene responses in THP-1 cells. Virology, 376, 290–296. [DOI] [PubMed] [Google Scholar]
  • 46.Umareddy I., Tang K.F., Vasudevan S.G., Devi S., Hibberd M.L., and Gu F. (2008) Dengue virus regulates type I interferon signalling in a strain-dependent manner in human cell lines. J. Gen. Virol., 89, 3052–3062. [DOI] [PubMed] [Google Scholar]
  • 47.Duarte dos Santos C.N., Frenkiel M.P., Courageot M.P., Rocha C.F., Vazeille-Falcoz M.C., Wien M.W. et al. (2000) Determinants in the envelope E protein and viral RNA helicase NS3 that influence the induction of apoptosis in response to infection with dengue type 1 virus. Virology, 274, 292–308. [DOI] [PubMed] [Google Scholar]
  • 48.Silveira G.F., Meyer F., Delfraro A., Mosimann A.L., Coluchi N., Vasquez C. et al. (2011) Dengue virus type 3 isolated from a fatal case with visceral complications induces enhanced proinflammatory responses and apoptosis of human dendritic cells. J. Virol., 85, 5374–5383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Martina B.E., Koraka P., and Osterhaus A.D. (2009) Dengue virus pathogenesis: an integrated view. Clin. Microbiol. Rev., 22, 564–581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Silva L.K., Blanton R.E., Parrado A.R., Melo P.S., Morato V.G., Reis E.A. et al. (2010) Dengue haemorrhagic fever is associated with polymorphisms in JAK1. Eur. J. Hum. Genet., 18, 1221–1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Whitehorn J., Chau T.N., Nguyet N.M., Kien D.T., Quyen N.T., Trung D.T. et al. (2013) Genetic variants of MICB and PLCE1 and associations with non-severe dengue. PLoS One, 8, e59067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Terajima M., Hendershot J.D. 3rd, Kariwa H., Koster F.T., Hjelle B., Goade D. et al. (1999) High levels of viraemia in patients with the Hantavirus pulmonary syndrome. J. Infect. Dis., 180, 2030–2034. [DOI] [PubMed] [Google Scholar]
  • 53.Sanchez A., Lukwiya M., Bausch D., Mahanty S., Sanchez A.J., Wagoner K.D., and Rollin P.E. (2004) Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) haemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J. Virol., 78, 10370–10377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Duh D., Saksida A., Petrovec M., Ahmeti S., Dedushaj I., Panning M. et al. (2007) Viral load as predictor of Crimean-Congo haemorrhagic fever outcome. Emerg. Infect. Dis., 13, 1769–1772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Libraty D.H., Young P.R., Pickering D., Endy T.P., Kalayanarooj S., Green S. et al. (2002) High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue haemorrhagic fever. J. Infect. Dis., 186, 1165–1168. [DOI] [PubMed] [Google Scholar]
  • 56.Libraty D.H., Endy T.P., Houng H.S., Green S., Kalayanarooj S., Suntayakorn S. et al. (2002) Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J. Infect. Dis., 185, 1213–1221. [DOI] [PubMed] [Google Scholar]
  • 57.Stramer S.L., Linnen J.M., Carrick J.M., Foster G.A., Krysztof D.E., Zou S. et al. (2012) Dengue viraemia in blood donors identified by RNA and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion, 52, 1657–1666. [DOI] [PubMed] [Google Scholar]
  • 58.Wahala W.M., and Silva A.M. (2011) The human antibody response to dengue virus infection. Viruses, 3, 2374–2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.van der Schaar H.M., Wilschut J.C., and Smit J.M. (2009) Role of antibodies in controlling dengue virus infection. Immunobiology, 214, 613–629. [DOI] [PubMed] [Google Scholar]
  • 60.Guzman M.G., Alvarez M., and Halstead S.B. (2013) Secondary infection as a risk factor for dengue haemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol., 158, 1445–1459. [DOI] [PubMed] [Google Scholar]
  • 61.Halstead S.B., Mahalingam S., Marovich M.A., Ubol S., and Mosser D.M. (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis., 10, 712–722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Ubol S., and Halstead S.B. (2010) How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin. Vaccine Immunol., 17, 1829–1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.van de Weg C.A., Pannuti C.S., de Araujo E.S., van den Ham H.J., Andeweg A.C., Boas L.S. et al. (2013) Microbial translocation is associated with extensive immune activation in dengue virus infected patients with severe disease. PLoS Negl. Trop. Dis., 7, e2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Weiskopf D., Angelo M.A., de Azeredo E.L., Sidney J., Greenbaum J.A., Fernando A.N. et al. (2013) Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl. Acad. Sci. USA, 110, E2046–2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Malavige G.N., and Ogg G.S. (2013) T cell responses in dengue viral infections. J Clin. Virol., 58, 605–611. [DOI] [PubMed] [Google Scholar]
  • 66.Wu M.F., Chen S.T., Yang A.H., Lin W.W., Lin Y.L., Chen N.J. et al. (2013) CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood, 121, 95–106. [DOI] [PubMed] [Google Scholar]
  • 67.Martins Sde T., Silveira G.F., Alves L.R., Duarte dos Santos C.N., and Bordignon J. (2012) Dendritic cell apoptosis and the pathogenesis of dengue. Viruses, 4, 2736–2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Long X., Li Y., Qi Y., Xu J., Wang Z., Zhang X. et al. (2013) XAF1 contributes to dengue virus-induced apoptosis in vascular endothelial cells. Faseb J., 27, 1062–1073. [DOI] [PubMed] [Google Scholar]
  • 69.Rothman A.L. (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol., 11, 532–543. [DOI] [PubMed] [Google Scholar]
  • 70.Mongkolsapaya J., Dejnirattisai W., Xu X.N., Vasanawathana S., Tangthawornchaikul N., Chairunsri A. et al. (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue haemorrhagic fever. Nat. Med., 9, 921–927. [DOI] [PubMed] [Google Scholar]
  • 71.Matsuda T., Almasan A., Tomita M., Tamaki K., Saito M., Tadano M. et al. (2005) Dengue virus-induced apoptosis in hepatic cells is partly mediated by Apo2 ligand/tumour necrosis factor-related apoptosis-inducing ligand. J. Gen. Virol., 86, 1055–1065. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 72.Liu Y., Liu H., Zou J., Zhang B., and Yuan Z. (2014) Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology, 448, 15–25. [DOI] [PubMed] [Google Scholar]
  • 73.El-Bacha T., Midlej V., Pereira da Silva A.P., Silva da Costa L., Benchimol M., Galina A., and Da Poian A.T. (2007) Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim. Biophys. Acta, 1772, 1158–1166. [DOI] [PubMed] [Google Scholar]
  • 74.van de Weg C.A., Koraka P., van Gorp E.C., Mairuhu A.T., Supriatna M., Soemantri A. et al. (2012) Lipopolysaccharide levels are elevated in dengue virus infected patients and correlate with disease severity. J. Clin. Virol., 53, 38–42. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES