Abstract
Iron is an essential micronutrient for microbial life. At the start of an infection the host environment will normally restrict available iron, and innate immune responses will aim to further reduce iron, thus inhibiting growth of potential pathogens. Successful pathogens have developed a variety of mechanisms to acquire iron from the available in vivo sources, using remote and direct capture, to render their environment iron replete. Iron restriction, and the presence of host iron sources like haem, are important drivers of gene regulation controlling the expression of numerous virulence factors. As an infection progresses the changing iron environment will therefore influence pathogen gene expression and trigger new activities. Understanding how bacteria acquire iron, and how iron acquisition affects the bacteria, has identified vaccine and antibiotic drug targets and is now suggesting novel approaches to control and treat infection.
Keywords: iron, haemoglobin, siderophores, gene regulation, pathogens, uropathogenic Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, antibiotics, vaccines
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
References
- 1.Andrews S.C., Robinson A.K., and Rodriguez-Quinones F. (2003) Bacterial iron homeostasis. FEMS Microbiol. Rev., 27, 215–237. [DOI] [PubMed] [Google Scholar]
- 2.Crichton R. (2001) Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences, 2nd edn, Chap. 8, p. 191. Wiley, New York. [Google Scholar]
- 3.Andrews N.C. (2008) Forging a field: the golden age of iron biology. Blood, 112, 219–230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Weinberg E.D. (2009) Iron availability and infection. Biochim. Biophys. Acta, 1790, 600–605. [DOI] [PubMed] [Google Scholar]
- 5.Cassat J.E., and Skaar E.P. (2013) Iron in infection and immunity. Cell Host Microbe, 13, 509–519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Khan F.A., Fisher M.A., and Khakoo R.A. (2007) Association of hemochromatosis with infectious diseases: expanding spectrum. Int. J. Infect. Dis., 11, 482–487. [DOI] [PubMed] [Google Scholar]
- 7.Drakesmith H., and Prentice A.M. (2012) Hepcidin and the iron-infection axis. Science, 338, 768–772. [DOI] [PubMed] [Google Scholar]
- 8.Peyssonnaux C., Zinkernagel A.S., Datta V., Lauth X., Johnson R.S., and Nizet V. (2006) TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood, 107, 3727–3732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Byrd T.F., and Horwitz M.A. (1993) Regulation of transferrin receptor expression and ferritin content in human mononuclear phagocytes. Coordinate upregulation by iron transferrin and downregulation by interferon gamma. J. Clin. Invest., 91, 969–976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Weiss G. (2005) Modification of iron regulation by the inflammatory response. Best Pract. Res. Clin. Haematol., 18, 183–201. [DOI] [PubMed] [Google Scholar]
- 11.Gruenheid S., Pinner E., Desjardins M., and Gros P. (1997) Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J. Exp. Med., 185, 717–730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Govoni G., Gauthier S., Billia F., Iscove N.N., and Gros P. (1997) Cell-specific and inducible Nramp1 gene expression in mouse macrophages in vitro and in vivo. J. Leukoc. Biol., 62, 277–286. [DOI] [PubMed] [Google Scholar]
- 13.Cellier M.F., Courville P., and Campion C. (2007) Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect., 9, 1662–1670. [DOI] [PubMed] [Google Scholar]
- 14.Centers for Disease Control and Prevention (CDC). (2011) Fatal laboratory-acquired infection with an attenuated Yersinia pestis Strain–Chicago, Illinois, 2009. Morb. Mortal. Wkly. Rep., 60, 201–205. [PubMed] [Google Scholar]
- 15.Gerhard G.S., Chokshi R., Still C.D., Benotti P., Wood G.C., Freedman-Weiss M., Rider C., and Petrick A.T. (2011) The influence of iron status and genetic polymorphisms in the HFE gene on the risk for postoperative complications after bariatric surgery: a prospective cohort study in 1,064 patients. Patient Saf. Surg., 5, 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Xiong A., Singh V.K., Cabrera G., and Jayaswal R.K. (2000) Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus. Microbiology, 146, 659–668. [DOI] [PubMed] [Google Scholar]
- 17.Prince R.W., Cox C.D., and Vasil M.L. (1993) Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur Gene. J. Bacteriol., 175, 2589–2598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Escolar L., Pérez-Martin J., and de Lorenzo V. (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol., 181, 6223–6229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Ranjan S., Yellaboina S., and Ranjan A. (2006) IdeR in mycobacteria: from target recognition to physiological function. Crit. Rev. Microbiol., 32, 69–75. [DOI] [PubMed] [Google Scholar]
- 20.Moustafa M., Aronoff G.R., Chandran C., Hartzel J.S., Smugar S.S., Galphin C.M., Mailloux L.U., Brown E., Dinubile M.J., Kartsonis N.A., and Guris D. (2012) Phase IIa study of the immunogenicity and safety of the novel Staphylococcus aureus vaccine V710 in adults with end-stage renal disease receiving hemodialysis. Clin. Vaccine Immunol., 19, 1509–1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Brumbaugh A.R., Smith S.N., and Mobley H.L. (2013) Immunization with the yersiniabactin receptor, FyuA, protects against pyelonephritis in a murine model of urinary tract infection. Infect. Immun., 81, 3309–3316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Nandal A., Huggins C.C., Woodhall M.R., McHugh J., Rodríguez-Quiñones F., Quail M.A., Guest J.R., and Andrews S.C. (2010) Induction of the ferritin gene (ftnA) of Escherichia coli by Fe(2+)-Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol. Microbiol., 75, 637–657. [DOI] [PubMed] [Google Scholar]
- 23.Troxell B., and Hassan H.M. (2013) Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front. Cell. Infect. Microbiol., 3, 1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Husain M., Jones-Carson J., Liu L., Song M., Saah J.R., Troxell B., Mendoza M., Hassan H., and Vázquez-Torres A. (2014) Ferric uptake regulator-dependent antinitrosative defenses in Salmonella enterica serovar Typhimurium pathogenesis. Infect. Immun., 82, 333–340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Gancz H., Censini S., and Merrell D.S. (2006) Iron and pH Homeostasis Intersect at the Level of Fur Regulation in the Gastric Pathogen Helicobacter pylori. Infect. Immun., 74, 602–614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Zanotti G., and Cendron L. (2010) Functional and structural aspects of Helicobacter pylori acidic stress response factors. IUBMB Life, 62, 715–723. [DOI] [PubMed] [Google Scholar]
- 27.Johnson M., Sengupta M., Purves J., Tarrant E., Williams P.H., Cockayne A., Muthaiyan A., Stephenson R., Ledala N., Wilkinson B.J., Jayaswal R.K., and Morrissey J.A. (2011) Fur is required for the activation of virulence gene expression through the induction of the sae regulatory system in Staphylococcus aureus. Int. J. Med. Microbiol., 301, 44–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Massé E., and Gottesman S. (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA, 99, 4620–4625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Torres V.J., Attia A.S., Mason W.J., Hood M.I., Corbin B.D., Beasley F.C., Anderson K.L., Stauff D.L., McDonald W.H., Zimmerman L.J., Friedman D.B., Heinrichs D.E., Dunman P.M., and Skaar E.P. (2010) Staphylococcus aureus fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect. Immun., 78, 1618–1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Mittal R., Sharma S., Chhibber S., and Harjai K. (2008) Iron dictates the virulence of Pseudomonas aeruginosa in urinary tract infections. J. Biomed. Sci., 15, 731–741. [DOI] [PubMed] [Google Scholar]
- 31.Rosen D.A, Hooton T.M., Stamm W.E., Humphrey P.A., and Hultgren S.J. (2007) Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med., 4, e329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Rowe M.C., Withers H.L., and Swift S. (2010) Uropathogenic Escherichia coli forms biofilm aggregates under iron restriction that disperse upon the supply of iron. FEMS Microbiol. Lett., 307, 102–109. [DOI] [PubMed] [Google Scholar]
- 33.O'Toole G., Kaplan H.B., and Kolter R. (2000) Biofilm formation as microbial development. Annu. Rev. Microbiol., 54, 49–79. [DOI] [PubMed] [Google Scholar]
- 34.Hall-Stoodley L., and Stoodley P. (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol., 13, 7–10. [DOI] [PubMed] [Google Scholar]
- 35.Fux C.A, Costerton J.W., Stewart P.S., and Stoodley P. (2005) Survival strategies of infectious biofilms. Trends Microbiol., 13, 34–40. [DOI] [PubMed] [Google Scholar]
- 36.Johnson M., Cockayne A., Williams P.H., and Morrissey J.A. (2005) Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves Fur-Dependent and Fur-independent mechanisms. J. Bacteriol., 187, 8211–8215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Deighton M., and Borland R. (1993) Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect. Immun., 61, 4473–4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Musk D.J., Banko D.A., and Hergenrother P.J. (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol., 12, 789–796. [DOI] [PubMed] [Google Scholar]
- 39.Glick R., Gilmour C., Tremblay J., Satanower S., Avidan O., Déziel E., Greenberg E.P., Poole K., and Banin E. (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J. Bacteriol., 192, 2973–2980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Banin E., Vasil M.L., and Greenberg E.P. (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA, 102, 11076–11081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Moreau-Marquis S., Bomberger J.M., Anderson G.G., Swiatecka-Urban A., Ye S., O'Toole G.A., and Stanton B.A. (2008) The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am. J. Physiol. Lung Cell. Mol. Physiol., 295, L25–37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Reid D.W., Carroll V., O'May C., Champion A., and Kirov S.M. (2007) Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis. Eur. Respir. J., 30, 286–292. [DOI] [PubMed] [Google Scholar]
- 43.Rossi M.S., Paquelin A., Ghigo J.M., and Wandersman C. (2003) Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Mol. Microbiol., 48, 1467–1480. [DOI] [PubMed] [Google Scholar]
- 44.Haley K.P., and Skaar E.P. (2012) A battle for iron: host sequestration and Staphylococcus aureus acquisition. Microbes Infect., 14, 217–227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Noinaj N., Buchanan S.K., and Cornelissen C.N. (2012) The transferrin-iron import system from pathogenic Neisseria species. Mol. Microbiol., 86, 246–257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Brock J.H., Williams P.H., Licéaga J., and Wooldridge K.G. (1991) Relative availability of transferrin-bound iron and cell-derived iron to aerobactin-producing and enterochelin-producing strains of Escherichia coli and to other microorganisms. Infect. Immun., 59, 3185–3190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Ratledge C., and Dover L.G. (2000) Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol., 54, 881–941. [DOI] [PubMed] [Google Scholar]
- 48.Snyder J.A., Haugen B.J., Buckles E.L., Lockatell C.V., Johnson D.E., Donnenberg M.S., Welch R.A., and Mobley H.L. (2004) Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun., 72, 6373–6381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Hagan E.C., Lloyd A.L., Rasko D.A., Faerber G.J., and Mobley H.L. (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog., 6, e1001187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Date S.V., Modrusan Z., Lawrence M., Morisaki J.H., Toy K., Shah I.M., Kim J., Park S., Xu M., Basuino L., Chan L., Zeitschel D., Chambers H.F., Tan M.W., Brown E.J., Diep B.A., and Hazenbos W.L. (2014) Global gene expression of methicillin-resistant Staphylococcus aureus USA300 during human and mouse infection. J. Infect. Dis., 209, 1542–1550. [DOI] [PubMed] [Google Scholar]
- 51.Skvortsov T.A., Ignatov D.V., Majorov K.B., Apt A.S., and Azhikina T.L. (2013) Mycobacterium tuberculosis transcriptome profiling in mice with genetically different susceptibility to tuberculosis. Acta Naturae, 5, 62–69. [PMC free article] [PubMed] [Google Scholar]
- 52.Ryndak M.B., Singh K.K., Peng Z., Zolla-Pazner S., Li H., Meng L., and Laal S. (2014) Transcriptional Profiling of Mycobacterium tuberculosis Replicating Ex vivo in Blood from HIV- and HIV+ Subjects. PLoS One, 9, e94939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Konings A.F., Martin L.W., Sharples K.J., Roddam L.F., Latham R., Reid D.W., and Lamont I.L. (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect. Immun., 81, 2697–2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Brzuszkiewicz E., Brüggemann H., Liesegang H., Emmerth M., Olschläger T., Nagy G., Albermann K., Wagner C., Buchrieser C., Emody L., Gottschalk G., Hacker J., and Dobrindt U. (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc. Natl. Acad. Sci. USA, 103, 12879–12884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Welch R.A., Burland V., Plunkett G. 3rd, Redford P., Roesch P., Rasko D., Buckles E.L., Liou S.R., Boutin A., Hackett J., Stroud D., Mayhew G.F., Rose D.J., Zhou S., Schwartz D.C., Perna N.T., Mobley H.L., Donnenberg M.S., and Blattner F.R. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA., 99, 17020–17024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Hagan E.C., and Mobley H.L. (2009) Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol. Microbiol., 71, 79–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Garcia E.C., Brumbaugh A.R., and Mobley H.L. (2011) Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun., 79, 1225–1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Torres A.G., Redford P., Welch R.A., and Payne S.M. (2001) TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect. Immun., 69, 6179–6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Skaar E.P., Humayun M., Bae T., DeBord K.L., and Schneewind O. (2004) Iron-source preference of Staphylococcus aureus infections. Science, 305, 1626–1628. [DOI] [PubMed] [Google Scholar]
- 60.Torres V.J., Stauff D.L., Pishchany G., Bezbradica J.S., Gordy L.E., Iturregui J., Anderson K.L., Dunman P.M., Joyce S., and Skaar E.P. (2007) A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe, 1, 109–119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Reigstad C.S., Hultgren S.J., and Gordon J.I. (2007) Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J. Biol. Chem., 282, 21259–21267. [DOI] [PubMed] [Google Scholar]
- 62.Tan C.K., Carey A.J., Cui X., Webb R.I., Ipe D., Crowley M., Cripps A.W., Benjamin W.H. Jr., Ulett K.B., Schembri M.A., and Ulett G.C. (2012) Genome-wide mapping of cystitis due to Streptococcus agalactiae and Escherichia coli in mice identifies a unique bladder transcriptome that signifies pathogen-specific antimicrobial defense against urinary tract infection. Infect. Immun., 80, 3145–3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Duell B.L., Carey A.J., Tan C.K., Cui X., Webb R.I., Totsika M., Schembri M.A., Derrington P., Irving-Rodgers H., Brooks A.J., Cripps A.W., Crowley M., and Ulett G.C. (2012) Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection. J. Immunol., 188, 781–792. [DOI] [PubMed] [Google Scholar]
- 64.Flo T.H., Smith K.D., Sato S., Rodriguez D.J., Holmes M.A., Strong R.K., Akira S., and Aderem A. (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature, 432, 917–921. [DOI] [PubMed] [Google Scholar]
- 65.Fischbach M.A., Lin H., Zhou L., Yu Y., Abergel R.J., Liu D.R., Raymond K.N., Wanner B.L., Strong R.K., Walsh C.T., Aderem A., and Smith K.D. (2006) The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl. Acad. Sci. USA, 103, 16502–16507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Ojha A.K., Baughn A.D., Sambandan D., Hsu T., Trivelli X., Guerardel Y., Alahari A., Kremer L., Jacobs W.R., and Hatfull G.F. (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol., 69, 164–174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Ojha A., and Hatfull G.F. (2007) The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol. Microbiol., 66, 468–483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Pynnonen M., Stephenson R.E., Schwartz K., Hernandez M., and Boles B.R. (2011) Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog., 7, e1002104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Kelson A.B., Carnevali M., and Truong-Le V. (2013) Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr. Opin. Pharmacol., 13, 707–716. [DOI] [PubMed] [Google Scholar]
- 70.Mislin G.L., and Schalk I.J. (2014) Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics, 6, 408–420. [DOI] [PubMed] [Google Scholar]
- 71.Yep A., McQuade T., Kirchhoff P., Larsen M., and Mobley H.L. (2014) Inhibitors of TonB function identified by a high-throughput screen for inhibitors of iron acquisition in uropathogenic Escherichia coli CFT073. MBio, 5, e01089–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Deriu E., Liu J.Z., Pezeshki M., Edwards R.A., Ochoa R.J., Contreras H., Libby S.J., Fang F.C., and Raffatellu M. (2013) Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe, 14, 26–37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Musk D.J. Jr., and Hergenrother P.J. (2008) Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung. J. Appl. Microbiol., 105, 380–388. [DOI] [PubMed] [Google Scholar]
- 74.Reid D.W., O'May C., Roddam L.F., and Lamont I.L. (2009) Chelated iron as an anti-Pseudomonas aeruginosa biofilm therapeutic strategy. J. Appl. Microbiol., 106, 1058. [DOI] [PubMed] [Google Scholar]