Abstract
Antibiotics save many lives, but their efficacy is under threat: overprescription, population growth, and global travel all contribute to the rapid origination and spread of resistant strains. Exacerbating this threat is the fact that no new major classes of antibiotics have been discovered in the last 30 years: this is the “discovery void.” We discuss the traditional molecular targets of antibiotics as well as putative novel targets.
Keywords: antibiotics, bacterial resistances to antibiotics, MRSA, discovery void, cell wall, cell division
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
8. References
- 1.Anonymous. (2013) Less talk, more action. Nat. Rev. Microbiol., 11, 295. [DOI] [PubMed] [Google Scholar]
- 2.Evans A. (1978) Am. J. Epidemiol., 108, 249–258. [DOI] [PubMed] [Google Scholar]
- 3.Wright G.D. (2007) Nat. Rev. Microbiol., 5, 175–186. [DOI] [PubMed] [Google Scholar]
- 4.Winau F., Westphal O., and Winau R. (2004) Microbes Infect., 6, 786–789. [DOI] [PubMed] [Google Scholar]
- 5.Aminov R.I. (2010) Front. Microbiol., 1, 134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Bentley R. (2009) J. Ind. Microbiol. Biotechnol., 36, 775–786. [DOI] [PubMed] [Google Scholar]
- 7.Silver L. (2011) Clin. Microbiol. Rev., 24, 71–109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.(2013) UK 5 year antimicrobial resistance strategy 2013 to 2018. Dep. Heal. [Google Scholar]
- 9.Chopra I. (2013) J. Antimicrob. Chemother., 68, 496–505. [DOI] [PubMed] [Google Scholar]
- 10.Kohanski M.A., Dwyer D.J., and Collins J.J. (2010) Nat. Rev. Microbiol., 8, 423–435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Den Blaauwen T., Andreu J.M., and Monasterio O. (2014) Bioorg. Chem., 55, 27–38. [DOI] [PubMed] [Google Scholar]
- 12.Vollmer W., and Seligman S.J. (2010) Trends Microbiol., 18, 59–66. [DOI] [PubMed] [Google Scholar]
- 13.Cabeen M.T., and Jacobs-Wagner C. (2005) Nat. Rev. Microbiol., 3, 601–610. [DOI] [PubMed] [Google Scholar]
- 14.Vollmer W., and Höltje J.V. (2001) Curr. Opin. Microbiol., 4, 625–633. [DOI] [PubMed] [Google Scholar]
- 15.Gan L., Chen S., and Jensen G.J. (2008) Proc. Natl. Acad. Sci. U. S. A., 105, 18953–18957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Schleifer K., and Kandler O. (1972) Bacteriol. Rev., 36, 407–477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Vollmer W., Blanot D., and De Pedro M.A. (2008) FEMS Microbiol. Rev., 32, 149–167. [DOI] [PubMed] [Google Scholar]
- 18.Egan A.J.F., and Vollmer W. (2013) Ann. N. Y. Acad. Sci., 1277, 8–28. [DOI] [PubMed] [Google Scholar]
- 19.Barreteau H., Kovač A., Boniface A. et al. (2008) FEMS Microbiol. Rev., 32, 168–207. [DOI] [PubMed] [Google Scholar]
- 20.Bouhss A., Trunkfield A.E., Bugg T.D.H., and Mengin-Lecreulx D. (2008) FEMS Microbiol. Rev., 32, 208–233. [DOI] [PubMed] [Google Scholar]
- 21.Mohammadi T., van Dam V., Sijbrandi R. et al. (2011) EMBO J., 30, 1425–1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Sham L., Butler E., Lebar M. et al. (2014) Science, 345, 220–222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Gmeiner J., Essig P., and Martin H. (1982) FEBS Lett., 138, 109–112. [DOI] [PubMed] [Google Scholar]
- 24.Glauner B., Holtje J.V., and Schwarz U. (1988) J. Biol. Chem., 263, 10088–10095. [PubMed] [Google Scholar]
- 25.Höltje J.V., and Glauner B. (1990) Res. Microbiol., 141, 75–89. [DOI] [PubMed] [Google Scholar]
- 26.Den Blaauwen T., Aarsman M.E.G., Vischer N.O.E., and Nanninga N. (2003) Mol. Microbiol., 47, 539–547. [DOI] [PubMed] [Google Scholar]
- 27.Spratt B.G. (1975) Proc. Natl. Acad. Sci. U. S. A., 72, 2999–3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Spratt B.G. (1977) Eur. J. Biochem., 72, 341–352. [DOI] [PubMed] [Google Scholar]
- 29.Suzuki H., Nishimura Y., and Hirota Y. (1978) Proc. Natl. Acad. Sci. U. S. A., 75, 664–668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Schiffer G., and Höltje J.V. (1999) J. Biol. Chem., 274, 32031–32039. [DOI] [PubMed] [Google Scholar]
- 31.Derouaux A., Wolf B., Fraiport C. et al. (2008) J. Bacteriol., 190, 1831–1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Hantke K., and Braun V. (1973) Eur. J. Biochem., 34, 284–296. [DOI] [PubMed] [Google Scholar]
- 33.Dramsi S., Magnet S., Davison S., and Arthur M. (2008) FEMS Microbiol. Rev., 32, 307–320. [DOI] [PubMed] [Google Scholar]
- 34.Goehring N.W., and Beckwith J. (2005) Curr. Biol., 15, R514–26. [DOI] [PubMed] [Google Scholar]
- 35.Den Blaauwen T., de Pedro M.A., Nguyen-Distèche M., and Ayala J.A. (2008) FEMS Microbiol. Rev., 32, 321–344. [DOI] [PubMed] [Google Scholar]
- 36.De Pedro M., Donachie W.D., Höltje J.V., and Schwarz H. (2001) J. Bacteriol., 183, 4115–4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.De Pedro M.A., Quintela J.C., Höltje J.V., and Schwarz H. (1997) J. Bacteriol., 179, 2823–2834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Kruse T., Bork-Jensen J., and Gerdes K. (2005) Mol. Microbiol., 55, 78–89. [DOI] [PubMed] [Google Scholar]
- 39.Van den Ent F., Amos L.A., and Löwe J. (2001) Nature, 413, 39–44. [DOI] [PubMed] [Google Scholar]
- 40.Esue O., Cordero M., Wirtz D., and Tseng Y. (2005) J. Biol. Chem., 280, 2628–2635. [DOI] [PubMed] [Google Scholar]
- 41.Salje J., van den Ent F., de Boer P., and Löwe J. (2011) Mol. Cell, 43, 478–487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Shih Y.L., Le T., and Rothfield L. (2003) Proc. Natl. Acad. Sci. U. S. A., 100, 7865–7870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Swulius M., and Jensen G. (2012) J. Bacteriol., 194, 6382–6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Van Teeffelen S., Wang S., Furchtgott L. et al. (2011) Proc. Natl. Acad. Sci., 108, 15822–15827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Mohammadi T., Karczmarek A., Crouvoisier M. et al. (2007) Mol. Microbiol., 65, 1106–1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Bendezu F., Hale C., Bernhardt T., and de Boer P. (2009) EMBO J., 28, 193–204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Van den Ent F., Johnson C.M., Persons L. et al. (2010) EMBO J., 29, 1081–1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Karczmarek A., Baselga R.M.A., Alexeeva S. et al. (2007) Mol. Microbiol., 65, 51–63. [DOI] [PubMed] [Google Scholar]
- 49.Shiomi D., Sakai M., and Niki H. (2008) EMBO J., 27, 3081–3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Van den Ent F., Leaver M., Bendezu F. et al. (2006) Mol. Microbiol., 62, 1631–1642. [DOI] [PubMed] [Google Scholar]
- 51.Leaver M., and Errington J. (2005) Mol. Microbiol., 57, 1196–1209. [DOI] [PubMed] [Google Scholar]
- 52.Ikeda M., Sato T., Wachi M. et al. (1989) J. Bacteriol., 171, 6375–6378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Weiss D., Pogliano K., Carson M. et al. (1997) Mol. Microbiol., 25, 671–681. [DOI] [PubMed] [Google Scholar]
- 54.Banzhaf M., van den Berg van Saparoea B., Terrak M. et al. (2012) Mol. Microbiol., 85, 179–194. [DOI] [PubMed] [Google Scholar]
- 55.Paradis-Bleau C., Markovski M., Uehara T. et al. (2010) Cell, 143, 1110–1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Typas A., Banzhaf M., van den Berg van Saparoea B. et al. (2010) Cell, 143, 1097–1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Van der Ploeg R., Verheul J., Vischer N.O.E. et al. (2013) Mol. Microbiol., 87, 1074–1087. [DOI] [PubMed] [Google Scholar]
- 58.Typas A., Banzhaf M., Gross C.A., and Vollmer W. (2011) Nat. Rev. Microbiol., 10, 123–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Scheurwater E., Reid C.W., and Clarke A.J. (2008) Int. J. Biochem. Cell Biol., 40, 586–591. [DOI] [PubMed] [Google Scholar]
- 60.Sobhanifar S., King D.T., and Strynadka N.C.J. (2013) Curr. Opin. Struct. Biol., 23, 695–703. [DOI] [PubMed] [Google Scholar]
- 61.Park J.T., and Uehara T. (2008) Microbiol. Mol. Biol. Rev., 72, 211–227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Heidrich C., Templin M.F., Ursinus A. et al. (2001) Mol. Microbiol., 41, 167–178. [DOI] [PubMed] [Google Scholar]
- 63.Ghosh A.S., Chowdhury C., and Nelson D.E. (2008) Trends Microbiol., 16, 309–317. [DOI] [PubMed] [Google Scholar]
- 64.Park J.T., Raychaudhuri D., Li H. et al. (1998) J. Bacteriol., 180, 1215–1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Cheng Q., and Park J.T. (2002) J. Bacteriol., 184, 6434–6436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Cheng Q., Li H., Merdek K., and Park J.T. (2000) J. Bacteriol., 182, 4836–4840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Vötsch W., and Templin M.F. (2000) J. Biol. Chem., 275, 39032–39038. [DOI] [PubMed] [Google Scholar]
- 68.Jacobs C., Joris B., Jamin M. et al. (1995) Mol. Microbiol., 15, 553–559. [DOI] [PubMed] [Google Scholar]
- 69.Lee M., Zhang W., Hesek D. et al. (2009) J. Am. Chem. Soc., 131, 8742–8743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Templin M.F., Ursinus A., and Höltje J.V. (1999) EMBO J., 18, 4108–4117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Van Heijenoort J. (2011) Microbiol. Mol. Biol. Rev., 75, 636–663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Plumbridge J. (2009) J. Bacteriol., 191, 5641–5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Burman L.G., and Park J.T. (1984) Proc. Natl. Acad. Sci. U. S. A., 81, 1844–1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Park J., and Burman L. (1985) Ann. l'Institut Pasteur / Microbiol., 136, 51–58. [DOI] [PubMed] [Google Scholar]
- 75.De Jonge B., Wientjes F., Jurida I. et al. (1989) J. Bacteriol., 171, 5783–5794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Höltje J.V. (1998) Microbiol. Mol. Biol. Rev., 62, 181–203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Höltje J.V. (1996) Microbiology, 142, 1911–1918. [DOI] [PubMed] [Google Scholar]
- 78.Vollmer W., Von Rechenberg M., and Höltje J.V. (1999) J. Biol. Chem., 274, 6726–6734. [DOI] [PubMed] [Google Scholar]
- 79.Romeis T., and Höltje J.V. (1994) J. Biol. Chem., 269, 21603–21607. [PubMed] [Google Scholar]
- 80.Von Rechenberg M., Ursinus A., and Höltje J.V. (1996) Microb. Drug Resist., 2, 155–157. [DOI] [PubMed] [Google Scholar]
- 81.Erickson H.P., Anderson D.E., and Osawa M. (2010) Microbiol. Mol. Biol. Rev., 74, 504–528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Aarsman M.E.G., Piette A., Fraipont C. et al. (2005) Mol. Microbiol., 55, 1631–1645. [DOI] [PubMed] [Google Scholar]
- 83.Potluri L.P., Kannan S., and Young K.D. (2012) J. Bacteriol., 194, 5334–5342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Broughton C.E., Roper D.I., van den Berg H.A., and Rodger A. (2015) Sci. Prog., 98, 313–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Flynn J.M., Neher S.B., Kim Y.I. et al. (2003) Mol. Cell, 11, 671–683. [DOI] [PubMed] [Google Scholar]
- 86.Hanson P.I., and Whiteheart S.W. (2005) Nat. Rev. Mol. Cell Biol., 6, 519–529. [DOI] [PubMed] [Google Scholar]
- 87.Camberg J.L., Hoskins J.R., and Wickner S. (2009) Proc. Natl. Acad. Sci. U. S. A., 106, 10614–10619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Camberg J.L., Viola M.G., Rea L. et al. (2014) PLoS One 9, e94964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Sugimoto S., Yamanaka K., Nishikori S. et al. (2010) J. Biol. Chem., 285, 6648–6657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Camberg J.L., Hoskins J.R., and Wickner S. (2011) J. Bacteriol., 193, 1911–1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Durand-Heredia J., Rivkin E., Fan G. et al. (2012) J. Bacteriol., 194, 3189–3198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Gueiros-Filho F.J., and Losick R. (2002) Genes Dev., 16, 2544–2556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Mohammadi T., Ploeger G.E.J., Verheul J. et al. (2009) Biochemistry, 48, 11056–11066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Galli E., and Gerdes K. (2012) J. Bacteriol., 194, 292–302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Small E., Marrington R., Rodger A. et al. (2007) J. Mol. Biol., 369, 210–221. [DOI] [PubMed] [Google Scholar]
- 96.Low H.H., Moncrieffe M.C., and Löwe J. (2004) J. Mol. Biol., 341, 839–852. [DOI] [PubMed] [Google Scholar]
- 97.Pacheco-Gómez R., Cheng X., Hicks M. et al. (2013) Biochem. J., 449, 795–802. [DOI] [PubMed] [Google Scholar]
- 98.Ebersbach G., Galli E., Møller-Jensen J. et al. (2008) Mol. Microbiol., 68, 720–735. [DOI] [PubMed] [Google Scholar]
- 99.Buss J., Coltharp C., Shtengel G. et al. (2015) PLOS Genet., 11, e1005128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Espéli O., Borne R., Dupaigne P. et al. (2012) EMBO J., 31, 3198–3211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Hale C., Shiomi D., Liu B. et al. (2011) J. Bacteriol., 193, 1393–1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Durand-Heredia J.M., Yu H.H., De Carlo S. et al. (2011) J. Bacteriol., 193, 1405–1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Marteyn B.S., Karimova G., Fenton A.K. et al. (2014) MBio 5, e00022–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Schmidt K.L., Peterson N.D., Kustusch R.J. et al. (2004) J. Bacteriol., 186, 785–793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Corbin B.D., Wang Y., Beuria T.K., and Margolin W. (2007) J. Bacteriol., 189, 3026–3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.De Leeuw E., Graham B., Phillips G.J. et al. (1999) Mol. Microbiol., 31, 983–993. [DOI] [PubMed] [Google Scholar]
- 107.Karimova G., Dautin N., and Ladant D. (2005) J. Bacteriol., 187, 2233–2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Uehara T., Parzych K.R., Dinh T., and Bernhardt T.G. (2010) EMBO J., 29, 1412–1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Yang D.C., Peters N.T., Parzych K.R. et al. (2011) Proc. Natl. Acad. Sci., 108, E1052–E1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Aussel L., Barre F.X., Aroyo M. et al. (2002) Cell, 108, 195–205. [DOI] [PubMed] [Google Scholar]
- 111.Pease P.J., Levy O., Cost G.J. et al. (2005) Science, 307, 586–590. [DOI] [PubMed] [Google Scholar]
- 112.Yu X.C., Tran A.H., Sun Q., and Margolin W. (1998) J. Bacteriol., 180, 1296–1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Draper G.C., McLennan N., Begg K. et al. (1998) J. Bacteriol., 180, 4621–4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Buddelmeijer N., and Beckwith J. (2004) Mol. Microbiol., 52, 1315–1327. [DOI] [PubMed] [Google Scholar]
- 115.Tsang M., and Bernhardt T. (2015) Mol. Microbiol., 95, 925–944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Fraipont C., Alexeeva S., Wolf B. et al. (2011) Microbiology, 157, 251–259. [DOI] [PubMed] [Google Scholar]
- 117.Pastoret S., Fraipont C., den Blaauwen T. et al. (2004) J. Bacteriol., 186, 8370–8379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Bertsche U., Kast T., Wolf B. et al. (2006) Mol. Microbiol., 61, 675–690. [DOI] [PubMed] [Google Scholar]
- 119.Müller P., Ewers C., Bertsche U., Anstett M. et al. (2007) J. Biol. Chem., 282, 36394–36402. [DOI] [PubMed] [Google Scholar]
- 120.Gerding M.A., Liu B., Bendezú F.O. et al. (2009) J. Bacteriol., 191, 7383–7401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Weiss D. (2015) Mol. Microbiol., 95, 903–909. [DOI] [PubMed] [Google Scholar]
- 122.Busiek K.K., Eraso J.M., Wang Y., and Margolin W. (2012) J. Bacteriol., 194, 1989–2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Dai K., Xu Y., and Lutkenhaus J. (1993) J. Bacteriol., 175, 3790–3797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Reddy M. (2007) J. Bacteriol., 189, 98–108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Pichoff S., Du S., and Lutkenhaus J. (2015) Mol. Microbiol., 95, 971–987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Busiek K., and Margolin W. (2014) Mol. Microbiol., 92, 1212–1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Uehara T., Dinh T., and Bernhardt T.G. (2009) J. Bacteriol., 191, 5094–5107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Peters N.T., Dinh T., and Bernhardt T.G. (2011) J. Bacteriol., 193, 4973–4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Pichoff S., Shen B., Sullivan B., and Lutkenhaus J. (2012) Mol. Microbiol., 83, 151–167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Huisman O., D'Ari R., and Gottesman S. (1984) Proc. Natl. Acad. Sci. U. S. A., 81, 4490–4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Dajkovic A., Mukherjee A., and Lutkenhaus J. (2008) J. Bacteriol., 190, 2513–2526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Chen Y., Milam S.L., and Erickson H.P. (2012) Biochemistry, 51, 3100–3109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Mukherjee A., Cao C., and Lutkenhaus J. (1998) Proc. Natl. Acad. Sci. U. S. A., 95, 2885–2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Janion C. (2008) Int. J. Biol. Sci., 4, 338–344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Bi E., and Lutkenhaus J. (1993) J. Bacteriol., 175, 1118–1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Mizusawa S., and Gottesman S. (1983) Proc. Natl. Acad. Sci. U. S. A., 80, 358–362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Wu L.J., and Errington J. (2012) Nat. Rev. Microbiol., 10, 8–12. [DOI] [PubMed] [Google Scholar]
- 138.Wu L.J., and Errington J. (2004) Cell, 117, 915–925. [DOI] [PubMed] [Google Scholar]
- 139.Bernhardt T.G., and de Boer P. (2005) Mol. Cell, 18, 555–564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Wu L.J., Ishikawa S., Kawai Y. et al. (2009) EMBO J., 28, 1940–1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Tonthat N.K., Arold S.T., Pickering B.F. et al. (2011) EMBO J., 30, 154–164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Du S., and Lutkenhaus J. (2014) PLoS Genet., 10, e1004460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Mercier R., Petit M., Schbath S. et al. (2008) Cell, 135, 475–485. [DOI] [PubMed] [Google Scholar]
- 144.Bailey M., Bisicchia P., Warren B. et al. (2014) PLOS Genet., 10, e1004504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Dow C.E., Rodger A., Roper D.I., and van den Berg H.A. (2013) Integr. Biol. (Camb)., 5, 778–95. [DOI] [PubMed] [Google Scholar]
- 146.Dow C.E., van den Berg H.A., Roper D.I., and Rodger A. (2015) Biochemistry, 54, 3803–3813. [DOI] [PubMed] [Google Scholar]
- 147.Schaffner-Barbero C., Martín-Fontecha M., Chacón P., and Andreu J.M. (2012) ACS Chem. Biol., 7, 269–277. [DOI] [PubMed] [Google Scholar]
- 148.Anderson D.E., Kim M.B., Moore J.T. et al. (2012) ACS Chem. Biol., 7, 1918–1928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Läppchen T., Hartog A.F., Pinas V.A. et al. (2005) Biochemistry, 44, 7879–7884. [DOI] [PubMed] [Google Scholar]
- 150.Läppchen T., Pinas V.A., Hartog A.F. et al. (2008) Chem. Biol., 15, 189–199. [DOI] [PubMed] [Google Scholar]
- 151.Läppchen T. (2007) Synthesis of GTP analogues and evaluation of their effect on the antibiotic target FtsZ and its eukaryotic homologue tubulin, University of Amsterdam. [Google Scholar]
- 152.Cordell S.C., Robinson E.J.H., and Lowe J. (2003) Proc. Natl. Acad. Sci. U. S. A., 100, 7889–7894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Sorto N.A., Painter P.P., Fettinger J.C. et al. (2013) Org. Lett., 15, 2700–2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Ohashi Y., Chijiiwa Y., Suzuki K. et al. (1999) J. Bacteriol., 181, 1348–1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Haydon D.J., Stokes N.R., Ure R. et al. (2008) Science, 321, 1673–1675. [DOI] [PubMed] [Google Scholar]
- 156.Tan C.M., Therien A.G., Lu J. et al. (2012) Sci. Transl. Med., 4, 126ra35. [DOI] [PubMed] [Google Scholar]
- 157.Andreu J.M., Schaffner-Barbero C., Huecas S. et al. (2010) J. Biol. Chem., 285, 14239–14246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Elsen N.L., Lu J., Parthasarathy G. et al. (2012) J. Am. Chem. Soc., 134, 12342–12345. [DOI] [PubMed] [Google Scholar]
- 159.Matsui T., Yamane J., Mogi N. et al. (2012) Acta Crystallogr. Sect. D Biol. Crystallogr., 68, 1175–1188. [DOI] [PubMed] [Google Scholar]
- 160.Kaul M., Mark L., Zhang Y. et al. (2013) Antimicrob. Agents Chemother., 57, 5860–5869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Adams D.W., Wu L.J., Czaplewski L.G., and Errington J. (2011) Mol. Microbiol., 80, 68–84. [DOI] [PubMed] [Google Scholar]
- 162.Stokes N.R., Baker N., Bennett J.M. et al. (2013) Antimicrob. Agents Chemother., 57, 317–325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Wang J., Galgoci A., Kodali S. et al. (2003) J. Biol. Chem., 278, 44424–44428. [DOI] [PubMed] [Google Scholar]
- 164.Park Y., Grove C., Gonzalez-Lopez M. et al. (2011) Angew. Chemie - Int. Ed., 50, 3730–3733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Rai D., Singh J.K., Roy N., and Panda D. (2008) Biochem. J., 410, 147–155. [DOI] [PubMed] [Google Scholar]
- 166.Duggirala S., Nankar R.P., Rajendran S., and Doble M. (2014) Appl. Biochem. Biotechnol., 174, 283–296. [DOI] [PubMed] [Google Scholar]
- 167.Domadia P.N., Bhunia A., Sivaraman J. et al. (2008) Biochemistry, 47, 3225–3234. [DOI] [PubMed] [Google Scholar]
- 168.Beuria T.K., Santra M.K., and Panda D. (2005) Biochemistry, 44, 16584–16593. [DOI] [PubMed] [Google Scholar]
- 169.Domadia P., Swarup S., Bhunia A. et al. (2007) Biochem. Pharmacol., 74, 831–840. [DOI] [PubMed] [Google Scholar]
- 170.Margalit D.N., Romberg L., Mets R.B. et al. (2004) Proc. Natl. Acad. Sci. U. S. A., 101, 11821–11826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Ruiz-Avila L.B., Huecas S., Artola M. et al. (2013) ACS Chem. Biol., 8, 2072–2083. [DOI] [PubMed] [Google Scholar]
- 172.Singh P., Jindal B., Surolia A., and Panda D. (2012) Biochemistry, 51, 5434–5442. [DOI] [PubMed] [Google Scholar]
- 173.Tsao D., Sutherland A.G., Jennings L. et al. (2006) Bioorganic Med. Chem., 14, 7953–7961. [DOI] [PubMed] [Google Scholar]
- 174.Kenny C., Ding W., Kelleher K. et al. (2003) Anal. Biochem., 323, 224–233. [DOI] [PubMed] [Google Scholar]
- 175.Sutherland A.G., Alvarez J., Ding W. et al. (2003) Org. Biomol. Chem., 1, 4138–4140. [DOI] [PubMed] [Google Scholar]