Abstract
A review is presented of some of the ways in which electron spin resonance (ESR) spectroscopy may be useful to investigate systems of relevance to the biomedical sciences. Specifically considered are: spin-trapping in biological media; the determination of antioxidant efficiencies; lipid-peroxidation; the use of nitroxides as probes of metabolic activity in cells and as structural probes of cell-membranes; ESR coupled with materials for radiation-dosimetry; food- and drug-irradiation; studies of enzyme systems and of cyclodextrins; diagnosis of cancer and rheumatoid arthritis; measurement of oxidative stress in synovial tissue in preparation for joint replacement; determination of oxidative species during kidney dialysis; measurement of biological oxygen concentrations (oximetry); trapping in living cells of the endothelium-derived relaxing factor nitric oxide (NO); measurement of hydrogen peroxide; determination of drugs of abuse (opiates); ESR measurements of whole blood and as a means to determine the age of bloodstains for forensic analysis are surveyed, and also a determination of the aqueous volume of human sperm cells is described, among other topics.
Keywords: electron spin resonance, antioxidant efficiencies, lipid-peroxidation, structural probe of cell-membranes, diagnosis of cancer and rheumatoid arthritis, biological fluids
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
References
- 1.Carrington A., and McLachlan A. (1967) Introduction to magnetic resonance. London: Harper and Row. ISBN 0470265728. [Google Scholar]
- 2. http://en.wikipedia.org/wiki/Electron_paramagnetic_resonance#cite_note-lowd-6
- 3.Swartz H.M. et al. (2004) NMR Biomed., 17, 335.15366033 [Google Scholar]
- 4.Swartz H.M. et al. (2007) Radiat. Meas., 42, 1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Dunne J. et al. (2006) Biochem. J., 399, 513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Fujita Y. et al. (2005) Forensic Science International, 152, 39. [DOI] [PubMed] [Google Scholar]
- 7.Fossey J., Lefort D., and Sorba J. (1995) Free radicals in organic chemistry. Wiley, Chichester. [Google Scholar]
- 8.Wertz J.E., and Bolton J.R. (1972) Electron spin resonance: theory and practical applications. McGraw-Hill, New York. [Google Scholar]
- 9.Rhodes C.J. (ed.) (2000) Toxicology of the human environment - the critical role of free radicals. Taylor and Francis, London. [Google Scholar]
- 10.Perkins M.J. (1980) Adv. Phys. Org. Chem., 17, 1. [Google Scholar]
- 11.Swartz H.M., and Timmins G.S. (2000) In: Rhodes C.J. (ed.), Toxicology of the human environment - the critical role of free radicals, p. 91. Taylor and Francis, London. [Google Scholar]
- 12.Mitchell J.B. et al. (2000) In: Rhodes C.J. (ed.), Toxicology of the human environment - the critical role of free radicals, p. 113. Taylor and Francis, London. [Google Scholar]
- 13.Tomasi A., and Iannone A. (1993) In: Biological Magnetic Resonance, Berliner L.J., and Reuben J. (eds.), Vol. 13, Plenum Press, New York, p 353. [Google Scholar]
- 14.Ichimori K. et al. (1993) Free Rad. Res. Comms., S129. [Google Scholar]
- 15.Towner R.A. (2000) In: Rhodes C.J. (ed.), Toxicology of the human environment - the critical role of free radicals, p. 8. Taylor and Francis, London. [Google Scholar]
- 16.Janzen E.G. et al. (1985) Environ. Health Perspects., 64, 151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Eberson L. (2000) In: Rhodes C.J. (ed.), Toxicology of the human environment - the critical role of free radicals, p. 25. Taylor and Francis, London. [Google Scholar]
- 18.Buettner G.R., and Sharma M.K. (1993) Free Rad. Res. Commun., 19, S227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Iwahashi H. et al. (1991) Arch. Biochem. Biophys., 285, 172. [DOI] [PubMed] [Google Scholar]
- 20.Hiraoka W., Kuwabara M., and Sato F. (1991) Int. J. Radiat. Biol., 59, 875. [DOI] [PubMed] [Google Scholar]
- 21.Mason R.P. (2000) In: Rhodes C.J. (ed.), Toxicology of the human environment - the critical role of free radicals, p. 50. Taylor and Francis, London. [Google Scholar]
- 22.Lai E.K. et al. (1979) Biochem. Pharmacol., 28, 2231. [DOI] [PubMed] [Google Scholar]
- 23.Tomasi A. et al. (2000) In: Rhodes C.J. (ed.), Toxicology of the human environment - the critical role of free radicals, p. 71. Taylor and Francis, London. [Google Scholar]
- 24.Janzen E.G. (1987) Free Rad. Res. Commun., 3, 357. [DOI] [PubMed] [Google Scholar]
- 25.Knecht K.T., DeGray J.A., and Mason R.P. (1992) Mol. Pharmacol., 41, 943. [PubMed] [Google Scholar]
- 26.Di Luzio N.R. (1963) Physiologist, 6, 169. [Google Scholar]
- 27.Slater T.F. (1972) Free radical mechanisms in tissue injury, Pion Ltd., London. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Knecht K.T., Bradford B.U., and Mason R.P. (1990) Mol. Pharmacol., 38, 26. [PubMed] [Google Scholar]
- 29.Tran T.T. et al. (2000) Pest. Manag. Sci., 56, 818. [Google Scholar]
- 30.Rhodes C.J., Tran T.T., and Morris H. (2004) Spectrochim. Acta A, 60, 1401. [DOI] [PubMed] [Google Scholar]
- 31.Roselaar S.E. et al. (1995) Kidney Int., 48, 199. [DOI] [PubMed] [Google Scholar]
- 32.Singh D. et al. (1995) Ann. Rheum. Dis., 54, 94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Nazhat N.B. et al. (1990) Biochem. Biophys. Res. Commun., 166, 807. [DOI] [PubMed] [Google Scholar]
- 34.Stolze K., and Mason R.P. (1987) Biochem. Biophys. Res. Commun., 143, 941. [DOI] [PubMed] [Google Scholar]
- 35.Ozawa T., and Hanaki H. (1987) Biochem. Biophys. Res. Commun., 142, 410. [DOI] [PubMed] [Google Scholar]
- 36.Ozawa T., and Hanaki A. (1986) Biochem. Biophys. Res. Commun., 136, 657. [DOI] [PubMed] [Google Scholar]
- 37.Kohno M. et al. (1991) Bull. Chem. Soc. Jpn., 64, 1447. [Google Scholar]
- 38.Ozawa T., and Hanaki A. (1991) Bull. Chem. Soc. Jpn., 64, 1976. [Google Scholar]
- 39.Guo R. et al. (2002) Biochem. Biophys. Acta, 1572, 133. [DOI] [PubMed] [Google Scholar]
- 40.Chandra H., Keeble D.J., and Symons M.C.R. (1988) J. Chem. Soc., Faraday Trans., 1, 84, 609. [Google Scholar]
- 41.Davies C.A. et al. (2001) Nitric oxide: Biology and Chemistry, 5, No. 2, 116. [DOI] [PubMed] [Google Scholar]
- 42.Nazhat N.B. (1999) Biochim. Biophys. Acta, 1427, 276. [DOI] [PubMed] [Google Scholar]
- 43.Mulsch A., Mordvintcev P., and Vanin A. (1992) Neuroprotocols: A Companion to Methods in Neurosciences, 192, Vol. 1, No. 2, 165. [Google Scholar]
- 44.Grootveld M., and Rhodes C.J. (1995) In: Blake D., and Winyard P.G. (eds.), Immunopharmacology of free radical species. p. 3. Academic Press, San Diago. [Google Scholar]
- 45.Clement B. et al. (1994) Arch. Pharm. (Weinheim), 327, 793. [DOI] [PubMed] [Google Scholar]
- 46.Olesen S.P. et al. (1997) Acta Neurol. Scand., 95, 219. [DOI] [PubMed] [Google Scholar]
- 47.Mordvintcev P. et al. (1991) Analyt. Biochem., 199, 142. [DOI] [PubMed] [Google Scholar]
- 48.Arroyo C.M., and Kohno M. (1991) Free Rad. Res. Commun., 14, 145. [DOI] [PubMed] [Google Scholar]
- 49.Park J.S.B., and Walton J.C. (1997) J. Chem. Soc., Perkin Trans., 2, 2579. [Google Scholar]
- 50.Gabr I., and Symons M.C.R. (1996) J. Chem. Soc., Faraday Trans., 92, 1769. [Google Scholar]
- 51.Korth H.-G. et al. (1992) Angew. Chem. Int. Ed. Engl., 31, 891. [Google Scholar]
- 52.Yordanov N.D., Novakova E., and Lubenova S. (2001) Anal. Chim. Acta, 437, 131. [Google Scholar]
- 53.Halliwell B., and Gutteridge J.M.G. (1989) Free radicals in biology and medicine. Clarendon Press, Oxford. [Google Scholar]
- 54.Swartz H.M. et al. (1994) Adv. Exp. Med. Biol., 361, 119. [DOI] [PubMed] [Google Scholar]
- 55.James P.E. et al. (1997) Magn. Reson. Med., 38, 48. [DOI] [PubMed] [Google Scholar]
- 56.Boyer S.J., and Clarkson R.B. (1994) Colloids Surf., 82, 217. [Google Scholar]
- 57.Atsarkin V.A. et al. (2001) J. Mag. Reson., 149, 1. [DOI] [PubMed] [Google Scholar]
- 58.Jordan B.F., Baudelet C., and Gallez B. (1998) Magn. Reson. Mater. Phys. Biol. Med., 7, 121. [Google Scholar]
- 59.Liu K.J. et al. (1994) Biophys. J, 67, 896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Regulla D. (2000) Appl. Radiat. Isot., 52, 1023. [DOI] [PubMed] [Google Scholar]
- 61.Ikeya M. et al. (2000) Appl. Radiat. Isot., 52, 1209. [DOI] [PubMed] [Google Scholar]
- 62.Lund A. et al. (2002) Spectrochim. Acta A, 58, 1301. [DOI] [PubMed] [Google Scholar]
- 63.Joint FAO/AEA/WHO Expert Committee, Wholesomeness of irradiated food, 1981, WHO, Geneva, No. 659. [PubMed] [Google Scholar]
- 64.Piccerelle P. et al. (2000) J. Pharma. Belg., 55, 131. [PubMed] [Google Scholar]
- 65.Ambroz H. et al. (2000) Radiat. Phys. Chem., 58, 357. [Google Scholar]
- 66.Raffi J. et al. (2002) Spectrochim. Acta A, 58, 1313. [DOI] [PubMed] [Google Scholar]
- 67.Raffi J., and Belliardo J.-J. (1991) Potential new methods in identification of irradiated food, CE, Luxembourg, EUR 13331 EN.
- 68.Douifi L. et al. (1998) Spectrochim. Acta A, 54, 2403. [DOI] [PubMed] [Google Scholar]
- 69.Raffi J. (1998) Trends. Anal. Chem., 17, 226. [Google Scholar]
- 70.Raffi J., and Stocker P. (1996) Appl. Magn. Reson., 10, 357. [Google Scholar]
- 71.Dodd N., Swallow A.J., and Ley F. (1985) Radiat. Phys. Chem., 26, 451. [Google Scholar]
- 72.Desrosiers M. (1996) J. Appl. Radiat. Isot., 47, 1621. [DOI] [PubMed] [Google Scholar]
- 73.Rafi J.J. et al. (1988) J. Chem. Soc., Faraday Trans. 1, 84, 3359. [Google Scholar]
- 74.Kocherginsky N., and Swartz H.M. (1995) Nitroxide spin labels. CRC Press, Boca Raton. [Google Scholar]
- 75.Swartz H.M., and Walczak T. (1996) Res. Chem. Intermed., 22, 511. [Google Scholar]
- 76.Belkin S. et al. (1987) Arch. Biochem. Biophys., 256, 232. [DOI] [PubMed] [Google Scholar]
- 77.Morris G. et al. (1991) J. Pharm. Sci., 80, 149. [DOI] [PubMed] [Google Scholar]
- 78.Schara M., Pecar S., and Svetek J. (1990) Colloids Surf., 45, 303. [Google Scholar]
- 79.Marsh D. (1981) In: Grell E. (ed.), Membrane spectroscopy, p. 15. Springer Verlag, Berlin. [Google Scholar]
- 80.Seelig J. (1976) In: Berliner L.J. (ed.), Spin labelling: theory and applications, p. 373. Academic Press, New York. [Google Scholar]
- 81.Chen K., Morse P.D. II, and Swartz H.M. (1983) Biochem. Biophys. Acta, 943, 477. [DOI] [PubMed] [Google Scholar]
- 82.Sentjurc M., Morse P.D. II, and Swartz H.M. (1986) Period. Biol., 88, 202. [Google Scholar]
- 83.Bartosz B., and Gwodzinski K. (1983) Am. J. Hematol., 14, 377. [DOI] [PubMed] [Google Scholar]
- 84.Gwodzinski K., Bartosz B., and Leyko W. (1982) Stud. Biophys., 89, 141. [Google Scholar]
- 85.Gwodzinski K. (1986) Radiat. Environ. Biophys., 25, 107. [DOI] [PubMed] [Google Scholar]
- 86.Gwodzinski K. (1985) Stud. Biophys., 106, 43. [Google Scholar]
- 87.Chen K., and McLaughlin M.G. (1985) Biochem. Biophys. Acta, 845, 189. [DOI] [PubMed] [Google Scholar]
- 88.Gascoyne P., Pethig R., and Szent-Gyorgi A. (1987) Biochem. Biophys. Acta, 923, 257. [DOI] [PubMed] [Google Scholar]
- 89.Nahl S. et al. (1988) Physiol. Chem. Phys. Med., 20, 183. [PubMed] [Google Scholar]
- 90.Kieber D.J., Johnson C.G., and Blough N.V. (1992) Free Rad. Res. Commun., 16, 35. [DOI] [PubMed] [Google Scholar]
- 91.Chen K., and Swartz H.M. (1989) Biochem. Biophys. Acta, 992, 131. [DOI] [PubMed] [Google Scholar]
- 92.Hockel M.K. (1996) Cancer Res., 6, 4509. [PubMed] [Google Scholar]
- 93.Hockel M.K. (1996) Sem. Radiat. Oncol., 6, 3. [DOI] [PubMed] [Google Scholar]
- 94.Vaupel P. (1996) Experimentia, 52, 464. [DOI] [PubMed] [Google Scholar]
- 95.Gabrijelcic V., and Sentjurc M. (1995) Int. J. Pharm., 118, 207. [Google Scholar]
- 96.Gabrijelcic V., Sentjurc M., and Kristl J. (1990) Int. J. Pharm., 62, 75. [Google Scholar]
- 97.Gabrijelcic V., Sentjurc M., and Schara M. (1991) Period. Biol., 93, 245. [Google Scholar]
- 98.Gabrijelcic V., Sentjurc M., and Schara M. (1994) Int. J. Pharm, 102, 151. [Google Scholar]
- 99.Fuchs J. et al. (1997) Free Rad. Biol. Med., 22, 967. [DOI] [PubMed] [Google Scholar]
- 100. http://www.cyberlipid.org/perox/oxid0002.htm
- 101.Burton G.W., Foster D.O., Perley B., Slater T.F., Smith I.C.P., and Ingold K.U. (1985) Philos. Trans. R. Soc. Lond. B, 311, 565–578. [DOI] [PubMed] [Google Scholar]
- 102.Gutteridge J.M.C. (1978) Res. Commun. Chem. Pathol. Pharmacol., 22, 563–571. [PubMed] [Google Scholar]
- 103.Zhu J. et al. (1990) J. Phys. Chem., 94, 7185. [Google Scholar]
- 104.Sevilla C.L., Becker D., and Sevilla M.D. (1986) J. Phys. Chem., 90, 2963–2968. [Google Scholar]
- 105.Yanez J., Sevilla C.L., Becker D., and Sevilla M.D. (1987) J. Phys. Chem., 91, 487. [Google Scholar]
- 106.Zhu J., and Sevilla M.D. (1990) J. Phys. Chem., 94, 1447. [Google Scholar]
- 107.Muller S.N., Batra R., Senn M., Geise B., Kisel M., and Shadyro O. (1997) J. Am. Chem. Soc., 119, 2795. [Google Scholar]
- 108.Shi X.L., Rojanasakul Y., Gannet P., Liu K.J., Mao Y., Daniel L.N., Ahmed N., and Saffiotti U. (1994) J. Inorg. Biochem., 56, 77. [DOI] [PubMed] [Google Scholar]
- 109.Rhodes C.J., Hinds C.S., and Reid I.D. (1997) Free Rad. Res., 27, 347–352. [DOI] [PubMed] [Google Scholar]
- 110.Karoui H., Hogg N., Frejaville C., Tordo P., and Kalyanaraman B. (1996) J. Biol. Chem., 271, 6000. [DOI] [PubMed] [Google Scholar]
- 111.Karoui H., Hogg N., Joseph J., and Kalyanaraman B. (1996) Arch. Biochem. Biophys., 330, 115. [DOI] [PubMed] [Google Scholar]
- 112.Jiang J.J., Liu K.J., Jordan S.J., Swartz H.M., and Mason R.P. (1996) Arch. Biochem. Biophys., 330, 266. [DOI] [PubMed] [Google Scholar]
- 113.Stoyanovsky D.A., and Cederbaum A.I. (1996) Biochemistry, 35, 15839. [DOI] [PubMed] [Google Scholar]
- 114.Tezuka M., Ishii S., and Okada S. (1991) J. Inorg. Biochem., 44, 261–265. [DOI] [PubMed] [Google Scholar]
- 115.Hanna P.M., Kadiiska M.B., Jordan S.J., and Mason R.P. (1993) Chem. Res. Toxicol., 6, 711. [DOI] [PubMed] [Google Scholar]
- 116.Rikans L.E., Hornbrook K.R., and Cai Y. (1994) Mech. Age. Devel., 76, 89. [DOI] [PubMed] [Google Scholar]
- 117.Shi X.L., Dong Z.G., Dalal N.S., and Gannett P.M. (1994) Biochim. Biophys. Acta–Molec. Basis Dis., 1, 65. [DOI] [PubMed] [Google Scholar]
- 118.Kikugawa K., Hiramoto K., Okamoto Y., and Hasegawa Y.K. (1994) Free Rad. Res., 21, 399. [DOI] [PubMed] [Google Scholar]
- 119.Hempenius R.A., Rietjens I.M.C.M., Grooten H.N.A., and Devries J. (1992) Toxicology, 73, 23–34. [DOI] [PubMed] [Google Scholar]
- 120.Kramer J.H., Dickens B.F., Misic V., and Weglicki W.B. (1995) J. Molec. Cell. Cardiol., 27, 371. [DOI] [PubMed] [Google Scholar]
- 121.Barr D.P., and Mason R.P. (1995) J. Biol. Chem., 270, 12709. [DOI] [PubMed] [Google Scholar]
- 122.Barr D.P., Martin M.V., Guengerich F.P., and Mason R.P. (1996) Chem. Res. Toxicol., 9, 318. [DOI] [PubMed] [Google Scholar]
- 123.Rota C., Barr D.P., Martin M.V., Guengerich F.P., Tomasi A., and Mason R.P. (1997) Biochem. J., 328, 565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Berliner L.J. (ed.) (1976) Spin-labelling: theory and applications. Academic Press, New York. [Google Scholar]
- 125.Knowles P.F., and Marsh D. (1991) Biochem. J., 274, 625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Marsh D., and Horvath L.I. (1989) In: Hoff A.J. (ed.), Advanced ESR, applications in biology and biochemistry. p. 707. Elsevier, Amsterdam. [Google Scholar]
- 127.Van Bilsen D.G.J.L., and Hoekstra F.A. (1993) Plant Physiol., 101, 675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Cassol R., Ge M.T., Ferriani A., and Freed J.H. (1997) J. Phys. Chem., 101, 8782. [Google Scholar]
- 129.Patyal B.R., Crepeau R.H., and Freed J.H. (1997) Biophys. J., 73, 2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Xu D.J., Crepeau R.H., Ober C.K., and Freed J.H. (1996) J. Phys. Chem., 100, 15873. [Google Scholar]
- 131.Marsh D. (1997) Eur. Phys. J. Biophys. Lett., 26, 203. [Google Scholar]
- 132.Swamy M.J., and Marsh D. (1997) Biochemistry, 36, 7403. [DOI] [PubMed] [Google Scholar]
- 133.Marsh D. (1996) Braz. J. Med. Biol. Res., 29, 863. [PubMed] [Google Scholar]
- 134.Smirnov A.I., Smirnova T.I., and Morse P.D. (1995) Biophys. J., 68, 2350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Janzen E.G. (1974) Electron spin resonance. Analyt. Chem., 46(5), 478 R. [DOI] [PubMed] [Google Scholar]
- 136.Kazmierczak S.C. et al. (2006) Clin. Chem., 52(11), 2129. [DOI] [PubMed] [Google Scholar]
- 137.Matoba T. et al. (2003) Arterioscler. Thromb. Vasc. Biol., 23, 1224. [DOI] [PubMed] [Google Scholar]
- 138.Kleinhans V.S. et al. (1992) J. Androl., 13, 498. [PubMed] [Google Scholar]
- 139.Mitic N. et al. (2007) J. Am. Chem. Soc., 129, 9049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Van Doorslaer S., and Vinck E. (2007) Phys. Chem. Chem. Phys., 9, 4620. [DOI] [PubMed] [Google Scholar]
- 141.Wilson J.D., Wu G., Tsai A.-L., and Gerfen G.J. (2005) J. Am. Chem. Soc., 127, 1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Fernandes A.S., Sousa F.L., Teixeira M., and Pereira M.M. (2006) Biochemistry, 45, 1002. [DOI] [PubMed] [Google Scholar]
- 143.Colca J.R. (2004) Am. J. Physiol., 286, E252. [DOI] [PubMed] [Google Scholar]
- 144.Wiley S.E. et al. (2007) Proc. Natl. Acad. Sci. USA, 104, 5318.17376863 [Google Scholar]
- 145.Wiley S.E. (2007) J. Biol. Chem., 282, 23745. [DOI] [PubMed] [Google Scholar]
- 146.Yukovlev G., Reda T., and Hirst J. (2007) Proc. Natl. Acad. Sci. USA, 104, 12720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Tatur J., Hagen W.R., and Matias P.M. (2007) J. Biol. Chem., 12, 615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Jacobson F. et al. (2007) J. Biol. Chem., 282, 6347. [DOI] [PubMed] [Google Scholar]
- 149.Remenyi C., Reviakine R., and Kaupp M. (2007) J. Phys. Chem. B, 111, 8290. [DOI] [PubMed] [Google Scholar]
- 150.Fanucci G.E., and Cafiso D.S. (2006) Curr. Opin. Struct. Biol., 16, 644. [DOI] [PubMed] [Google Scholar]
- 151.Livshits V.A., and Marsh D. (2004) Biol. Magn. Reson., 22, 431. [Google Scholar]
- 152.Smirnova T.I., Smirnov A.I., Paschenko S.V., and Poluektov O.G. (2007) J. Am. Chem. Soc., 129, 3476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Kim N.-K., Murali A., and DeRose V.J. (2004) Chem. Biol., 11, 939. [DOI] [PubMed] [Google Scholar]
- 154.Peric M., Alves M., and Bales B.L. (2004) Biochim. Biophys. Acta, 1669, 116. [DOI] [PubMed] [Google Scholar]
- 155.Dzuba S.A. (2005) Russ. Chem. Rev., 74, 619. [Google Scholar]
- 156.Kay C.W.M. et al. (2006) J. Am. Chem. Soc., 128, 76. [DOI] [PubMed] [Google Scholar]
- 157.Livshits V.A. et al. (2005) Russ. Chem. Bull., 54, 1169. [Google Scholar]
- 158.Chechik V. (2007) New J. Chem., 31, 1726. [Google Scholar]
- 159.Chechik V., and Ionita G. (2006) Org. Biomolec. Chem., 4, 3505. [DOI] [PubMed] [Google Scholar]
- 160.Ottaviani M.F. et al. (2004) Langmuir, 20, 10238. [DOI] [PubMed] [Google Scholar]
- 161.Zhan M. et al. (2005) J. Med. Chem., 48, 4285. [DOI] [PubMed] [Google Scholar]