Skip to main content
Science Progress logoLink to Science Progress
. 2016 Mar 1;99(1):1–58. doi: 10.3184/003685016X14509452393033

Puzzles in Bonding and Spectroscopy: The Case of Dicarbon

Roderick M Macrae 1,
PMCID: PMC10365436  PMID: 27120813

Abstract

The unstable molecule C2 has been of interest since its identification as the source of the “Swan band” features observable in the spectra of flames, carbon arcs, white dwarf stars, and comets, and it continues to serve as a focal point for experimental and theoretical discovery. Recent spectroscopic work has identified a quintet state of the molecule for the first time, while new insights into the bond order of C2 in its ground state have been provided by sophisticated computational methods based on valence bond theory. This article gives a review of spectroscopic and computational work on C2 including both historical background and the most recent discoveries.

Keywords: Chemical bonding, quantum chemistry, spectroscopy, dicarbon

Full Text

The Full Text of this article is available as a PDF (6.7 MB).

References

  • 1.Swan W. (1857) Trans. R. Soc. Edinb., 21, 411–429. [Google Scholar]
  • 2.Gaydon A.C. (1974) The spectroscopy of flames, 2nd edn. Chapman and Hall, London. [Google Scholar]
  • 3.Ferguson R.E. (1955) J. Chem. Phys., 23, 2085–2089. [Google Scholar]
  • 4.Marques C.S.T., Benvenutti H., and Bertran C.A. (2006) J. Braz. Chem. Soc., 17, 302–315. [Google Scholar]
  • 5.Van Orden A., and Saykally R.J. (1998) Chem. Rev., 98, 2313–2357. [DOI] [PubMed] [Google Scholar]
  • 6.Dufour P. (2012) In: Hoard D.W. (ed.) White dwarf atmospheres and circumstellar environments, Chap. 3, p. 53. John Wiley and Sons. [Google Scholar]
  • 7.Lange H., Huczko A., and Byszewski P. (1996) Spectrosc. Lett., 29, 1215–1228. [Google Scholar]
  • 8.Sorkhabi O., Blunt V.M., Lin H., A'Hearn M.F., Weaver H.A., Arpigny C., and Jackson W.M. (1997) Planet. Space Sci., 45, 721–730. [Google Scholar]
  • 9.Huber P.K., and Herzberg G. (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules, Van Nostrand-Reinhold. (Data available from the NIST Chemistry WebBook, webbook.nist.gov.) [Google Scholar]
  • 10.Darwent B. de B. (1970) Bond dissociation energies of simple molecules, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (USA). [Google Scholar]
  • 11.Shaik S., Danovich D., Wu W., Su P., Rzepa, Henry S., and Hiberty P.C. (2012) Nature Chem., 4, 195–200. [DOI] [PubMed] [Google Scholar]
  • 12.Wollaston W.H. (1802) Phil. Trans. Roy. Roc. Lond., 92, 365–380. [Google Scholar]
  • 13.Jensen W.B. (1986) In: Stock J.T., and Orna M.V. (eds) The history and preservation of chemical instrumentation, pp. 123–149. Springer, New York. [Google Scholar]
  • 14.Fraunhofer J. (1815) Denkschriften der Königlichen Akademie der Wissenschaften zu München, 5, 193–226. [Google Scholar]
  • 15.Attfield J. (1862) Phil. Trans. Roy. Soc. Lond., 152, 221–224. [Google Scholar]
  • 16.Ångström A.J., and Thalén R. (1975) Nova Acta Reg. Soc. Sc. Upsal., 9. [Google Scholar]
  • 17.Smith C.P. (1875) Phil. Mag., 49, 24. [Google Scholar]
  • 18.Brand J.C.D. (1995) Lines of light: the sources of dispersive spectroscopy, 1800–1930. Overseas Publishers Association (Gordon and Breach)Amsterdam. [Google Scholar]
  • 19.Johnson R.C. (1927) Proc. Roy. Soc. Lond. A, 226, 157–230. [Google Scholar]
  • 20.Watts W.M. (1875) Phil. Mag., 49, 104–106. [Google Scholar]
  • 21.Bernath P.F. (2005) Spectra of atoms and molecules, 2nd edn. Oxford University Press. [Google Scholar]
  • 22.Ogilvie J.F. (2014) Resonance, 19, 834–839. [Google Scholar]
  • 23.Assmus A. (1992) Hist. Stud. Phys. Biol., Sci., 22, 209–231. [Google Scholar]
  • 24.Fortrat R. (1924) J. Phys. Radium, 5, 33–50. [Google Scholar]
  • 25.Sommerfeld A. (1931) Atomic structure and spectral lines, 2nd English edn. E.P. Dutton, Aberdeen. [Google Scholar]
  • 26.Ehrenfest P. (1913) Verh. der Deutsche. Physikalische Gesellschaft, 15, 451–457. [Google Scholar]
  • 27.Kragh H. (2012) Arch. Hist. Exact. Sci., 66, 199–240. [Google Scholar]
  • 28.Bjerrum N. (1949) Selected Papers, E. Munksgaard, Copenhagen. (The paper “On the infrared absorption of gases” originally appeared in Festschrift W. Nernst (1912) Halle, pp. 90–98.) [Google Scholar]
  • 29.Kemble E. (1920) Phys. Rev., 15, 95–109. [Google Scholar]
  • 30.Schwarzschild K. (1916) Sitzungsberichte d. Preuss. Akad. Wiss., 548–568. [Google Scholar]
  • 31.Shea J.D. (1927) Phys. Rev., 30, 825–843. [Google Scholar]
  • 32.Herzberg G. (1950) Spectra of diatomic molecules, 2nd edn. Van Nostrand Reinhold, New York. [Google Scholar]
  • 33.Lefebvre-Brion H., and Field R.W. (2004) The spectra and dynamics of diatomic molecules, Elsevier, Amsterdam. [Google Scholar]
  • 34.Brown J.M., Carrington A. (2003) Rotational spectroscopy of diatomic molecules. Cambridge University Press. [Google Scholar]
  • 35.Bernath P. (2002) In: Wilson S. (ed.) Handbook of molecular physics and quantum chemistry, Vol. 3, Chap. 16, Wiley, New York. [Google Scholar]
  • 36.Harris D.C., and Bertolucci M.D. (1978) Symmetry and spectroscopy. Oxford University Press. [Google Scholar]
  • 37.Atkins P.W., and Friedman (1997) Molecular quantum mechanics, 3rd edn. Oxford University Press. [Google Scholar]
  • 38.Ballik E.A., and Ramsay D.A. (1959) J. Chem. Phys., 31, 1128. [Google Scholar]
  • 39.Morse P.M. (1929) Phys. Rev., 34, 57. [Google Scholar]
  • 40.Dunham J.L. (1932) Phys. Rev., 41, 721–731. [Google Scholar]
  • 41.Hund F. (1933) Handbuch der Physik, 24, 561. [Google Scholar]
  • 42.Budó A. (1936) Z. f. Phys., 98, 437. [Google Scholar]
  • 43.Phillips J.G., and Davis S.P. (1968) The Swan system of the C2 molecule; the spectrum of the HgH molecule. University of California Press, Berkeley and Los Angeles. [Google Scholar]
  • 44.Brown J.M., and Merer A.J. (1972) J. Mol. Spectrosc., 74, 488–494. [Google Scholar]
  • 45.Whiting E.E., Schadee A., Tatum J.B., Hougen J.T., and Nicholls R.W. (1980) J. Mol. Spectrosc., 80, 249. [Google Scholar]
  • 46.Budó A. (1937) Z. f. Phys., 105, 579–587. [Google Scholar]
  • 47.Kovács I. (1969) Rotational structure in the spectra of diatomic molecules. Akadémiai Kiadó, Budapest, English transl. by L. Nemes. [Google Scholar]
  • 48.PGOPHER version 8.0, Western C.M. (2014) University of Bristol Research Data Repository, doi:10.5523/bris.huflggvpcuc1zvliqed497r2
  • 49.Brooke J.S.A., Bernath P.F., Schmidt T.W., and Bacskay G.B. (2013) J. Quant. Spectrosc., Radiat. Transfer, 124, 11–20. [Google Scholar]
  • 50.Curtis M.C., and Sarre P.J. (1985) J. Mol. Spectrosc., 113, 399–409. [Google Scholar]
  • 51.Prasad C.V.V., and Bernath P.F. (1994) Astrophys. J., 426, 812–821. [Google Scholar]
  • 52.Lloyd G.M., and Ewart P.E. (1999) J. Chem. Phys., 110, 385–392. [Google Scholar]
  • 53.Tanabashi A., Hirao T., Amano T., and Bernath P.F. (2007) Astrophys. J., 169, 472–484. [Google Scholar]
  • 54.Bornhauser P., Sych Y., Knopp G., Gerber T., and Radi P.P. (2011) J. Chem. Phys., 134, 044302. [DOI] [PubMed] [Google Scholar]
  • 55.Bornhauser P., Knopp G., Gerber T., and Radi P.P. (2010) J. Mol. Spectrosc., 262, 69–74. [Google Scholar]
  • 56.Pearse R.W.B., Gaydon A.G. (1976) The identification of molecular spectra, Springer, Berlin. [Google Scholar]
  • 57.Wallace L. (1962) Astrophys. J., 7, 165. [Google Scholar]
  • 58.Sorkhabi O., Xu D.D., Blunt V.M., Lin H., Price R., Wrobel J.D., and Jackson W.M. (1998) J. Mol. Spectrosc., 188, 200. [DOI] [PubMed] [Google Scholar]
  • 59.Messerle G., and Krauss L. (1967) Z. Naturforsch., 22a, 2015–2023. [Google Scholar]
  • 60.Douay M., Nietmann R., and Bernath P.F. (1988) J. Mol. Spectrosc., 131, 261–271. [Google Scholar]
  • 61.Freymark H. (1951) Ann. Phys. (Leipzig), 8, 221. [Google Scholar]
  • 62.Bornhauser P., Marquardt R., Gourlauen C., Knopp G., Beck M., Gerber T., van Bokhoven J.A., Radi P.P. (2015) J. Chem. Phys., 142, 094313. [DOI] [PubMed] [Google Scholar]
  • 63.Joester J.A., Nakajima M., Kokkin D.L., Nauta K., Kable S.H., and Schmidt T.W. (2007) J. Chem. Phys., 127, 214303. [DOI] [PubMed] [Google Scholar]
  • 64.Deslandres H., and D'Azambuja (L.) (1905) C. R. Acad. Sci., 140, 917–920. [Google Scholar]
  • 65.Mulliken R.S. (1930) Z. Electrochem., 36, 603. [Google Scholar]
  • 66.Fox J.G., and Herzberg G. (1937) J. Chem. Phys., 52, 638. [Google Scholar]
  • 67.Phillips J.G. (1948) Astrophys. J., 107, 389. [Google Scholar]
  • 68.Ballik E.A., and Ramsay D.A. (1958) J. Chem. Phys., 29, 1418. [Google Scholar]
  • 69.Ballik E.A., and Ramsay D.A. (1963) Astrophys. J., 137, 61–83. [Google Scholar]
  • 70.McCarty M., and Robinson G.W. (1959) J. Chim. Phys., 56, 723. [Google Scholar]
  • 71.Stawikowski A., and Swings P. (1960) Ann. d'ap., 23, 585. [Google Scholar]
  • 72.Bondybey V.E. (1976) J. Chem. Phys., 65, 2296–2304. [Google Scholar]
  • 73.Milligan D.E., and Jacox M.E. (1969) J. Chem. Phys., 51, 1952–1955. [Google Scholar]
  • 74.Ballik E.A., and Ramsay D.A. (1963) Astrophys. J., 137, 84–101. [Google Scholar]
  • 75.Messerle G., and Krauss L. (1967) Z. Naturforsch., 22 a, 2023–2026. [Google Scholar]
  • 76.Herzberg G., Lagerqvist A., and Malmberg C. (1969) Can. J. Phys., 47, 2735–2743. [Google Scholar]
  • 77.Bruna P.J., and Grein F. (2001) Can J. Phys., 79, 653–671. [Google Scholar]
  • 78.Barsuhn J. (1972) Z. Naturforsch., 27, 1031. [Google Scholar]
  • 79.Bruna P.J., and Wright J.S. (1992) J. Phys. Chem., 96, 1630. [Google Scholar]
  • 80.Hupe R., Sheffer Y., and Federman S.R. (2012) Astrophys. J., 761, article id 38, 7 pp. [Google Scholar]
  • 81.van den Burgt L.J., and Heaven M.C. (1988) J. Chem. Phys., 87, 4235. [Google Scholar]
  • 82.Goodwin P.M., and Cool T.A. (1988) J. Chem. Phys., 88, 4548. [Google Scholar]
  • 83.Shi D., Zhang X., Sun J., and Zhu Z. (2011) Mol. Phys., 109, 1453–1465. [Google Scholar]
  • 84.Bao Y., Urdahl R.S., and Jackson W.M. (1990) J. Chem. Phys., 94, 808–809. [Google Scholar]
  • 85.Wakabayashi T., Ong A.-L., and Krätschmer W. (2002) J. Chem. Phys., 116, 5996–6001. [Google Scholar]
  • 86.Kokkin D., Reilly N.J., Morris C.W., Nakajima M., Nauta K., Kable S., and Schmidt T.W. (2006) J. Chem. Phys., 125, 231101. [DOI] [PubMed] [Google Scholar]
  • 87.Schmidt T.W. (2010) In: Grunenberg J. (ed.) Astronomical molecular spectroscopy, Chap. 13 of Computational spectroscopy: methods, experiments and applications, Wiley-VCH, Weinheim. [Google Scholar]
  • 88.Nakajima M., Joester J.A., Page N.I., Reilly N.J., Bacskay G.B., Schmidt T.W., and Kable S.H. (2009) J. Chem. Phys., 131, 044301. [DOI] [PubMed] [Google Scholar]
  • 89.Martin M. (1992) J. Photochem. Photobiol. A, 66, 263. [Google Scholar]
  • 90.Kaminski C.F., Hughes I.G., and Ewart P. (1996) Appl. Phys. B, 62, 39–44. [Google Scholar]
  • 91.Kaminski C.F., Hughes I.G., and Ewart P. (1997) J. Chem. Phys., 106, 5324–5332. [Google Scholar]
  • 92.Lloyd G.M., and Ewart P. (1999) J. Chem. Phys., 110, 385–392. [Google Scholar]
  • 93.Nakajima M., and Endo Y. (2013) J. Chem. Phys., 139, 244310. [DOI] [PubMed] [Google Scholar]
  • 94.Schmidt T.W., and Bacskay G.B. (2011) J. Chem. Phys., 134, 224311. [DOI] [PubMed] [Google Scholar]
  • 95.Mulliken R.S. (1927) Phys. Rev., 29, 637–649. [Google Scholar]
  • 96.Hund F. (1928) Z. Physik, 51, 759. [Google Scholar]
  • 97.Jenkins F.A. (1948) Phys. Rev., 74, 355. [Google Scholar]
  • 98.Mulliken R.S. (1930) Rev. Mod. Phys., 2, 60–115. [Google Scholar]
  • 99.Mulliken R.S. (1931) Rev. Mod. Phys., 4, 1–86. [Google Scholar]
  • 100.Hund F. (1931) Z. Physik, 73, 1. [Google Scholar]
  • 101.Mulliken R.S. (1939) Phys. Rev., 56, 778–781. [Google Scholar]
  • 102.Pitzer K.S., and Clementi E. (1959) J. Am. Chem. Soc., 81, 4477–4485. [Google Scholar]
  • 103.Clementi E., and Pitzer K.S. (1960) J. Chem. Phys., 32, 656–662. [Google Scholar]
  • 104.Clementi E. (1960) Astrophys. J., 132, 898–904. [Google Scholar]
  • 105.Mulliken R.S. (1952) J. Phys. Chem., 56, 295–311. [Google Scholar]
  • 106.Read S.M., and Vanderslice J.T. (1962) J. Chem. Phys., 36, 2366–2369. [Google Scholar]
  • 107.Fougere P.F., and Nesbet R.K. (1966) J. Chem. Phys., 44, 285–298. [Google Scholar]
  • 108.Kirby K., and Liu B. (1979) J. Chem. Phys., 70, 893–900. [Google Scholar]
  • 109.Schmidt T.W., and Bacskay G.B. (2007) J. Chem. Phys., 127, 234310. [DOI] [PubMed] [Google Scholar]
  • 110.Abrams M.L., and Sherrill C.D. (2004) J. Chem. Phys., 121, 9211–9219. [DOI] [PubMed] [Google Scholar]
  • 111.Sherrill C.D., and Piecuch P. (2005) J. Chem. Phys., 122, 124104. [DOI] [PubMed] [Google Scholar]
  • 112.Hehre W.J., Ditchfield R., and Pople J.A. (1972) J. Chem. Phys., 56, 2257. [Google Scholar]
  • 113.Hariharan P.C., and Pople J.A. (1973) Theor. Chim. Acta, 28, 213. [Google Scholar]
  • 114.Kowalski K., and Piecuch P. (2000) J. Chem. Phys., 113, 18. [Google Scholar]
  • 115.Shi D., Zhang X., Sun J., and Zhu Z. (2011) Mol. Phys., 109, 1453–1465. [Google Scholar]
  • 116.Zhang X., Shi D., Sun J., and Zhu Z. (2011) Chin. Phys. B, 20, 043105. [Google Scholar]
  • 117.Booth G.H., Cleland D., Thom A.J.W., and Alavi A. (2011) J. Chem. Phys., 135, 084104. [DOI] [PubMed] [Google Scholar]
  • 118.Heitler W., and London F. (1927) Z. Phys., 44, 455. [Google Scholar]
  • 119.Gallup G.A. (2002) In: Cooper D.L. (ed.), Valence bond theory, Chap. 1, p. 1. Elsevier, New York. [Google Scholar]
  • 120.Magnasco V., and Costa C. (2005) Chem. Phys., Lett., 403, 303–307. [Google Scholar]
  • 121.Lennard-Jones J. (1929) Trans. Faraday Soc., 25, 668. [Google Scholar]
  • 122.Slater J.C. (1929) Phys. Rev., 34, 1293. [Google Scholar]
  • 123.Karadakov P.B. (1998) Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 94, 3–48. [Google Scholar]
  • 124.Hoffmann R., and Woodward R.B. (1968) Acc. Chem. Res., 1, 17–22. [Google Scholar]
  • 125.Woodward R.B., and Hoffmann R. (1971) The Conservation of Orbital Symmetry, Verlag Chemie GmbH, Weinheim. [Google Scholar]
  • 126.Potts A.W., and Price W.C. (1972) Proc. Roy. Soc. Lond. A 326, 165–179. [Google Scholar]
  • 127.Pauling L. (1931) J. Amer. Chem. Soc., 53, 1367–1400. [Google Scholar]
  • 128.Goddard W.A. III (1967) Phys. Rev., 157, 81. [Google Scholar]
  • 129.Coulson C., and Fischer I. (1949) Phil. Mag., 40, 386. [Google Scholar]
  • 130.Hiberty P.C., and Shaik S. (2006) J. Comput. Chem., 28, 137–151. [DOI] [PubMed] [Google Scholar]
  • 131.McWeeny R. (1992) Methods of molecular quantum mechanics, 2nd edn. Academic Press, San Diego. [Google Scholar]
  • 132.Pauncz R. (1979) Spin Eigenfunctions: construction and use, 1st edn. Plenum Press, New York. [Google Scholar]
  • 133.Gerratt J., and Lipscomb W.N. (1968) Proc. Natl. Acad. Sci. USA, 59, 332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Ladner R.C., and Goddard W.A. III (1969) J. Chem. Phys., 51, 1073. [Google Scholar]
  • 135.Pennotti F., Cooper D.L., Gerratt J., and Raimondi M. (1988) J. Mol. Struct. (Theochem), 169, 421. [Google Scholar]
  • 136.Cooper D.L., Gerratt J., and Raimondi M. (1986) Nature, 323, 699. [Google Scholar]
  • 137.van Lenthe J.H., and Balint-Kurti G.G. (1980) Chem. Phys., Lett., 76, 138. [Google Scholar]
  • 138.van Lenthe J.H., and Balint-Kurti G.G. (1983) Chem. Phys., Lett., 78, 5699. [Google Scholar]
  • 139.Hiberty P.C., Flament J.P., and Noizet E. (1992) Chem. Phys., Lett., 189, 259. [Google Scholar]
  • 140.Dunning T.H. Jr., Woon D.E., Leiding J., and Chen L. (2013) Acc. Chem. Res., 46, 359–368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Goddard W.A. III, Dunning T.H. Jr., Hunt W.J., and Hay P.J. (1973) Acc. Chem. Res., 6, 368–376. [Google Scholar]
  • 142.Su P., Wu J., Gu J., Wu W., Shaik S., and Hiberty P.C. (2011) J. Chem. Theory, Comput., 7, 121–130. [DOI] [PubMed] [Google Scholar]
  • 143.Song L., Mo Y., Zhang Q., and Wu W. (2005) J. Comput. Chem., 26, 514. [DOI] [PubMed] [Google Scholar]
  • 144.Shaik S., Maitre P., Sini G., and Hiberty P.C. (1992) J. Am. Chem. Soc., 114, 7861–7866. [Google Scholar]
  • 145.Shaik S., Danovich D., Wu W., and Hiberty P.C. (2009) Nature Chem., 1, 443–449. [DOI] [PubMed] [Google Scholar]
  • 146.Gordon M.S., and Truhlar D.G. (1987) Theor. Chim. Acta, 71, 1–5. [Google Scholar]
  • 147.Hiberty P.C., Danovich D., Shurki A., and Shaik S. (1995) J. Am. Chem. Soc., 117, 7760–7768. [Google Scholar]
  • 148.Kutzelnigg W. (1990) In: Maksic Z.B. (ed.) Theoretical models of chemical bonding, Vol. 2, p. 1. Springer, Berlin. [Google Scholar]
  • 149.Shaik S. (1989) In: Bertan J., and Ciszmadia G.I. (eds), New theoretical concepts for understanding organic reactions, p. 165. NATO ASI Series 267, Kluwer, Dordrecht. [Google Scholar]
  • 150.Ramos-Cordoba E., Salvador P., and Reiher M. (2013) Chem. Eur. J., 19, 15267–15275. [DOI] [PubMed] [Google Scholar]
  • 151.Clark A., and Davidson E. (2001) J. Chem. Phys., 115, 7382–7392. [Google Scholar]
  • 152.Xu L.T., and Dunning T.H. Jr. (2014) J. Chem. Theory Comput., 10, 195–201. [DOI] [PubMed] [Google Scholar]
  • 153.Van Vleck J.H., and Sherman A. (1935) Rev. Mod. Phys., 7, 167–228. [Google Scholar]
  • 154.Danovich D., Hiberty P.C., Wu W., Rzepa H.S., and Shaik S. (2014) Chem. Eur. J., 20, 6220–6232. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES