Skip to main content
Science Progress logoLink to Science Progress
. 2011 Jun 2;94(2):184–210. doi: 10.3184/003685011X13051250311491

Recent Initiatives in Experimental Thermodynamic Studies on Ionic Liquids [IL]-the Emergence of a Standard Thermochemical Database for ILs

Harry Donald Brooke Jenkins 1
PMCID: PMC10365440  PMID: 21805911

Abstract

One of the ultimate goals in the exciting on-going development and study of ionic liquids (ILs) must be the quest to establish “before synthesis” tools that could be used to predict and guide synthetic chemists towards ILs having “tuned” target properties. The tools needed in this exercise will come from many sources, not least from the acquisition of standard experimental thermodynamic data. The routine measurement of such data for new compounds had become very much a thing of the past in traditional chemistry. However with the surge of interest across the globe seen in these relatively new IL materials has come a recognition of the need to acquire experimental data and this review article seeks to assemble much of the emerging thermochemical data for ILs in one place. After all, there are very few data in current existing thermochemical databases that could offer much of a clue concerning the specific thermodynamic behaviour of ILs. We are charting new territory here. Development of any new large scale commercial process is preceded these days by a full study of its thermodynamic feasibility, usually at the pilot stage, and thus such data as are reported here are of the utmost value in this respect. It has a secondary role too in enabling predictions of missing data to become feasible and hence in predicting synthetic outcomes ahead of practical experiment.

This commentary tracks very recent trends and developments on the more quantitative and thermodynamic aspects of this exciting chemistry.

Keywords: ionic liquid, room or ambient temperature ionic liquid, non-aqueous ionic liquid, molten or fused organic salt, low melting ionic liquid, enthalpies of formation, standard entropies, volume-based thermodynamics

Full Text

The Full Text of this article is available as a PDF (159.9 KB).

References

  • 1.Jenkins H.D.B. (2009) Sci. Progr., 92(2), 91–112. [Google Scholar]
  • 2.Glasser L., and Jenkins H.D.B. (2010) J. Chem. Eng. Data, 56, 874–880. [Google Scholar]
  • 3.Jenkins H.D.B., Roobottom H.K., Passmore J., and Glasser L. (1999) Inorg. Chem., 38, 3609–3620. [DOI] [PubMed] [Google Scholar]
  • 4.Rhodes C.J. (2011) Sci. Prog., 94(2), in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jenkins H.D.B. (2011) Sci. Prog., 94(3), in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Gabriel S. (1888) Ber. 21, 2669–2703. [Google Scholar]
  • 7.Freemantle M. (2010) An introduction to ionic liquids, RSC Publishing, London. [Google Scholar]
  • 8.Seddon K.R. (1997) J. Chem. Technol. Biotechnol., 68, 351–356. [Google Scholar]
  • 9.Freemantle M. (1998) Chem. Eng. News, 32–33. [Google Scholar]
  • 10.Freemantle M. (2000) Chem. Eng. News, 78, 37–50. [Google Scholar]
  • 11.Freemantle M. (2003) Chem. Eng. News, 81, 9. [Google Scholar]
  • 12.Freemantle M. (1999) Chem. Eng. News, Jan 4, 23. [Google Scholar]
  • 13.Davis J.H. Jr. (2004) Chem. Lett., 1072. [Google Scholar]
  • 14.Schneider S., Hawkins T., Rosander M., Vaghjiani G., Chambreau S.D., and Drake G. (2008) Energy Fuels, 22, 2871–2872. [Google Scholar]
  • 15.Chambreau S.D., Schneider S., Rosander M., Hawkins T., Gallegos C.J., Pastewait M.F., and Vaghjiani G. (2008) J. Phys Chem. A, 112, 7816–7824. [DOI] [PubMed] [Google Scholar]
  • 16.Clark J.D. (1972) Ignition! An informal history of liquid rocket propellants. Rutgers University Press, New Brunswick. [Google Scholar]
  • 17.Fau S., Wilson K.J., and Bartlett R.J. (2002) J. Phys. Chem. A, 106, 4639–4644. [Google Scholar]
  • 18.Dixon D.A., Feller D., Christe K.O., Wilson W.W., Vij A., Vij V., Jenkins H.D.B., Olson R.M., and Gordon M.S. (2004) J. Am. Chem. Soc., 126, 834–843. [DOI] [PubMed] [Google Scholar]
  • 19.Christe K.O., Wilson W.W., Sheeby J.A., and Boatz J.A. (1999) Angew. Chem. Int. Ed., 38, 2004–2009. [DOI] [PubMed] [Google Scholar]
  • 20.Vij A., Wilson W.W., Vij V., Tham F.S., Sheehy J.A., and Christe K.O. (2001) J. Am. Chem. Soc., 123, 6308–6313. [DOI] [PubMed] [Google Scholar]
  • 21.Klapötke T.M., Stierstorfer J., Jenkins H.D.B., van Eldik R., and Schmeisser M. (2011) Z. Anorg. Allg. Chem., 637, in the press. doi: 10.1002/zaac.201100144. [Google Scholar]
  • 22.Yang J.Z., Xu W.G., and Zang Q.G. (2003) J. Chem. Thermodyn., 35, 18551860. [Google Scholar]
  • 23.Yang J.-Z., Tian P., Xu W.-G., Xu B., and Liu S.-Z. (2004) Thermochim. Acta, 412, 1–. [Google Scholar]
  • 24.Yang J.Z., Xu W.G., and Zang Q.G. (2003) J. Chem. Thermodyn., 35, 1855–1860. [Google Scholar]
  • 25.Drake G., Hawkins T., Brand A., Hall L., McKay M., Vij A., and Ismail I. (2003) Propell. Explos., 28, 174. [Google Scholar]
  • 26.Kaplan G., Drake G., Tollison K., Hall L., and Hawkins T. (2005) J. Heterocycl. Chem., 42, 19. [Google Scholar]
  • 27.Trohalaki S., Pachter R., Drake G.W., and Hawkins T. (2005) Energy Fuels, 19, 279. [Google Scholar]
  • 28.Gutowski K.E., Holbrey J.H., Rogers R.D., and Dixon D.A. (2005) J. Phys. Chem. B, 109, 23196–23208. [DOI] [PubMed] [Google Scholar]
  • 29.Zhang Z.-H., Tan Z.-C., Sun L.-X., Jia-Zhen Y., Lv X.-C., and Shi Q. (2006) Thermochim. Acta, 447, 141–146. [Google Scholar]
  • 30.Zaitsau D.H., Kabo G.J., Strechan A.A., Paulechka Y.U., Tschersich A., Verevkin S.P., and Heintz A. (2006) J. Phys. Chem. A, 110, 7303. [DOI] [PubMed] [Google Scholar]
  • 31.Rebelo L.P.N., Canongia Lopes J.N., Esperanca J.M.S.S., and Filipe E.J. (2005) J. Phys. Chem., B, 109, 6040–6043. [DOI] [PubMed] [Google Scholar]
  • 32.Krossing I., Slattery J.M., Daguenet C., Dyson P.J., Oleinikova A., and Weingartner H. (2006) J. Am. Chem. Soc., 128, 13427–13434. [DOI] [PubMed] [Google Scholar]
  • 33.Emel'yanenko V.N., Verevkin S.P., and Heintz A. (2007) J. Am. Chem. Soc., 129, 3930–3937. [DOI] [PubMed] [Google Scholar]
  • 34.Emel'yanenko V.N., Verevkin S.P., Heintz A., and Schick C. (2008) J. Phys. Chem. B, 112, 8095–8098. [DOI] [PubMed] [Google Scholar]
  • 35.Kelkar M.S., and Magin E.J. (2007) J. Phys. Chem. B, 111, 9424. [DOI] [PubMed] [Google Scholar]
  • 36.Emel'yanenko V.N., Verevkin S.P., Heintz A., Voss K., and Schultz A. (2009) J. Phys. Chem. B, 113, 9871–9876. [DOI] [PubMed] [Google Scholar]
  • 37.Krasnykh E.L., Verevkin S.P., Koutek B., and Doubsky J. (2006) J. Chem. Thermod., 38, 717–723. [Google Scholar]
  • 38.Emel'yanenko V.N., Verevkin S.P., Koutek B., and Doubsky J. (2005) J. Chem. Thermod., 37, 73–81. [Google Scholar]
  • 39.Deyco A., Lovelock K.R.J., Corfield A.W., Taylor A.W., Gooden P.N., Villar-Garcia I.J., Licence P., Jones R.G., Krasovskiy V.G., Chernikova E.A., and Kustov L.M. (2009) Phys. Chem. Chem. Phys., 11, 8544–8555. [DOI] [PubMed] [Google Scholar]
  • 40.Verevkin S.P., Emel'yanenko V.N., Zaitsau D.H., Heintz A., Muzny C.D., and Fenkel M. (2010) Phys. Chem. Chem. Phys., 12, 14994–1500. [DOI] [PubMed] [Google Scholar]
  • 41.Zhang Q.-C., Cai K.-D., Jin Z.-X., Wang S.-L., and Sun S.-S. (2010) J. Chem. Eng. Data, 55, 4044–4047. [Google Scholar]
  • 42.Archer D.G., Wildegren J.A., Kirklin D.R., and Magee J.W. (2005) J. Chem. Eng., Data, 50, 1484–1491. [Google Scholar]
  • 43.Jenkins H.D.B. (2005) J. Chem. Educ., 82, 950–952. [Google Scholar]
  • 44.Jenkins H.D.B. (2007) Chemical thermodynamics-at a glance, Blackwell, Oxford. [Google Scholar]
  • 45.Guan W., Yang J.Z., Li L., Wang H., and Zhang Q.G. (2006) Fluid. Phase Equilib., 239, 161–175. [Google Scholar]
  • 46.Izogorodina E.I. (2010) Phys. Chem. Chem. Phys., in press. [Google Scholar]
  • 47.Kobrak M.N. (2007) J. Phys. Chem. B, 111, 4755–4762. [DOI] [PubMed] [Google Scholar]
  • 48.Emel'yanenko V.E., Zaitsau D.H., Verevkin S.P., and Heintz A. (2011) Thermochim. Acta, doi: 10.1016/j.tca.2011.02.016. [Google Scholar]
  • 49.The composite G3(MP2) calculations were standard ab initio computations performed using the Gaussain 03 Revision.04 software package50.
  • 50.Frisch et al. (2003) Gaussian 03, revision B.04. Gaussian Inc.Pittsburgh, PA. [Google Scholar]
  • 51.Emel'yanenko V.E., Verevkin S.P., and Heintz A. (2007) J. Am. Chem. Soc., 129, 3930–3937. [DOI] [PubMed] [Google Scholar]
  • 52.Benson S.W. (1976) Thermochemical kinetics, Wiley, New York. [Google Scholar]
  • 53.Cohen N.J. (1996) J. Phys. Chem. Ref. Data, 25, 1411–1481. [Google Scholar]
  • 54.Jenkins H.D.B. (2011) Invited Lecture. RCCT-2011 Conference, The Samara State Technical University, Samara, Russia 443100. Conference Proceedings. 3–7 October.

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES