Skip to main content
Science Progress logoLink to Science Progress
. 2012 Jun 2;95(2):175–198. doi: 10.3184/003685012X13361524970266

Microfluidics and the Life Sciences

Holger Becker 1,, Claudia Gärtner 2
PMCID: PMC10365460  PMID: 22893979

Abstract

The field of microfluidics, often also referred to as “Lab-on-a-Chip” has made significant progress in the last 15 years and is an essential tool in the development of new products and protocols in the life sciences. This article provides a broad overview on the developments on the academic as well as the commercial side. Fabrication technologies for polymer-based devices are presented and a strategy for the development of complex integrated devices is discussed, together with an example on the use of these devices in pathogen detection.

Keywords: microfluidics, Lab-on-a-Chip

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

References

  • 1.Manz A., Graber N., and Widmer M. (1990) Sens Actuators, B1, 244–248. [Google Scholar]
  • 2.Becker H., and Manz A. (1996) Sci. Prog., 79(1), 49–63. [Google Scholar]
  • 3.Search in the PubMed database (http://www.ncbi.nlm.nih.gov/pubmed), conducted 15.5.2011. Search term: (microfluidic[Title/Abstract]) AND “YEAR”[Entrez Date]: “YEAR”[Entrez Date]
  • 4.Blow N. (2009) Nature Meth., 6, 683–686. [Google Scholar]
  • 5.Fenn F., and Raskino M. (2008) Mastering the hype cycle- how to choose the right innovation at the right time, Harvard Business Press, Cambridge. [Google Scholar]
  • 6.Terry S.C., Jermann J.H., and Angell J.B. (1979) IEEE Trans. Electron. Devices, ED-26, 1880–1886. [Google Scholar]
  • 7.Hardt S.; Schönfeld F. (2010) Microfluidic technologies for miniaturised analysis system, Springer, Berlin. [Google Scholar]
  • 8.Tabeling P. (2006) Introduction to microfluidics, Oxford University Press. [Google Scholar]
  • 9.Herold K:E., and Rasooly A. (eds) (2009) Lab-on-a-Chip Technology, Vol. 1, Fabrication and microfluidics, Caister Academic Press, Hethersett. [Google Scholar]
  • 10.Becker H., and Gärtner C. (2008) Anal. Bioanal. Chem. 390, 89–111. [DOI] [PubMed] [Google Scholar]
  • 11.Sia S.K., and Whitesides G.M. (2003) Electrophoresis. 24, 3563–3576. [DOI] [PubMed] [Google Scholar]
  • 12.Kartalov E.P., Anderson W.F., and Scherer A. (2006) J. Nanosci. Nanotechnol., 6(8), 2265–2277. [DOI] [PubMed] [Google Scholar]
  • 13.Melin J, and Quake S.R. (2007) Annu. Rev. Biophys. Biomol. Struct., 36, 213–231. [DOI] [PubMed] [Google Scholar]
  • 14.Pu Q.S., Luttge R., Gardeniers J.G.E., and van den Berg A. (2003) Electrophoresis., 24, 162–171. [DOI] [PubMed] [Google Scholar]
  • 15.Becker H., Arundell M., Harnisch A., and Hülsenberg D. (2002) Sens. Actuators B., 86, 271–279. [Google Scholar]
  • 16.Osellame R., Hoekstra H.J.W.M., Cerullo G., and Pollnau M. (2011) Laser Photon. Rev., 5(3), 442–463. [Google Scholar]
  • 17.Khan Malek C., and Saile V. (2004) Microelectronics J., 35, 131–143. [Google Scholar]
  • 18.Edwards T.L., Mohanty S.K., Edwards R.K., Thomas C.L., and Frazier B.A. (2002) Sensors Mater., 14, 167–78. [Google Scholar]
  • 19.McCormick R.M., Nelson R.J., Alonso-Amigo M.G., Benvegnu D.J., and Hooper H.H. (1997) Anal. Chem., 69, 2626–2630. [DOI] [PubMed] [Google Scholar]
  • 20.Mair D.A., Geiger E., Pisano A.P., Frechet J.M., and Svec F. (2006) Lab Chip, 6, 1346–1354. [DOI] [PubMed] [Google Scholar]
  • 21.Becker H. (2009) Lab Chip, 9, 2759–2762. [DOI] [PubMed] [Google Scholar]
  • 22.Liu C. C., and Cui D. F. (2005) Microsystem Technol., 11, 1262–1266. [Google Scholar]
  • 23.Brischwein M. et al. (2006) Lab Chip, 6, 819–822. [DOI] [PubMed] [Google Scholar]
  • 24.van Osch T.H.J., Perelaer J., de Laat A.W.M., and Schubert U.S. (2008) Adv. Mater., 20, 343–345. [Google Scholar]
  • 25.Soper S.A, Henry A.C., Vaidya B., Galloway M., Wabuyele M, and McCarley R.L. (2002) Anal. Chim. Acta, 470, 87–99. [Google Scholar]
  • 26.Locascio L.E., Henry A.C., Johnson T.J., and Ross D. (2003) In: Oosterbroeck R.E., and van den Berg A. (eds), Lab-on-a-Chip, Elsevier; 65–82. [Google Scholar]
  • 27.Belder D., and Ludwig M. (2003) Electrophoresis, 24, 3595–3606. [DOI] [PubMed] [Google Scholar]
  • 28.Erickson D. (2005) Microfluid. Nanofluid., 1, 301–318. [Google Scholar]
  • 29.Schulte T., Bardell R., and Weigl B.H. (2000) JALA, 5(4), 83–86. [Google Scholar]
  • 30.Kim J., Johnson M., Hill P., and Gale B.K. (2009) Integr. Biol., 1, 574–586. [DOI] [PubMed] [Google Scholar]
  • 31.Zhang C., Xu J., Ma W., and Zheng W. (2006) Biotechnol. Adv., 24, 243–284. [DOI] [PubMed] [Google Scholar]
  • 32.Asiello P.J., and Baeumner A.J. (2011) Lab Chip, 11(8), 1420–1430. [DOI] [PubMed] [Google Scholar]
  • 33.Konry T., Smolina I., Yarmush J.M., Irimia D., and Yarmush M.L. (2011) Small, 7(3), 395–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Lenigk R. et al. (2002) Anal. Biochem., 311, 40–49. [DOI] [PubMed] [Google Scholar]
  • 35.Kuswandi B., Nuriman, Huskens J., and Verboom W. (2007) Anal. Chim. Acta, 601, 141–155. [DOI] [PubMed] [Google Scholar]
  • 36.Vandaveer W.R., Pasas-Farmer S.A., Fischer D.J., Frankenfeld C.N., and Lunte S.M. (2004) Electrophoresis, 25, 3528–3549. [DOI] [PubMed] [Google Scholar]
  • 37.Fu Y.Q., Luo J.K., Du X.Y., Flewitt A.J., Li Y., Markx G.H., Walton A.J., and Milne W.I. (2010) Sens. Actuators B, 143, 606–619. [Google Scholar]
  • 38.Sagmeister B.P., Graz I.M., Schwödiauer R., Gruber H., and Bauer S. (2009) Biosensors Bioelectronics, 24, 2643–2648. [DOI] [PubMed] [Google Scholar]
  • 39.Kopp M.U., De Mello A.J., and Manz A. (1998) Science, 280, 1046–1048. [DOI] [PubMed] [Google Scholar]
  • 40.Schneegaß I., and Köhler J.M. (2001) Rev. Mol Biotechnol., 82, 101–121. [DOI] [PubMed] [Google Scholar]
  • 41.Bruin G.J.M. (2000) Electrophoresis, 21, 3931–3951. [DOI] [PubMed] [Google Scholar]
  • 42.Hessel V., Renken A., Schouten J.C., and Yoshida J. (eds) (2009) Micro process engineering: a comprehensive handbook, Wiley-VCH. [Google Scholar]
  • 43.Andersson H., and van den Berg A. (eds) (2004) Lab-on-Chips for cellomics, Kluwer, New York. [Google Scholar]
  • 44.El-Ali J., Sorger P.K., and Jensen K.F. (2006) Nature, 442, 403–411. [DOI] [PubMed] [Google Scholar]
  • 45.Paguirigan A.L., and Beebe D.J. (2008) BioEssays, 30, 811–821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Schütte J. et al. (2011) Biomed. Microdev., 13(3), 493–501. [DOI] [PubMed] [Google Scholar]
  • 47.Carstens C., Elbracht R., Gärtner C., and Becker H. (2010) Expert Opin. Drug Discov., 5, 673–679. [DOI] [PubMed] [Google Scholar]
  • 48.Ducrée J., Zengerle R., and Newman J. (2004) FlowMap: microfluidics roadmap for the life sciences, Books on Demand. [Google Scholar]
  • 49.Yole Developpement (2009) Emerging markets for microfluidics applications.
  • 50.Melanson S.E.F. (2011) Point of Care, 10, 63–68. [Google Scholar]
  • 51.Fragoso A., Latta D. et al. (2011) Lab Chip, 11, 625–631. [DOI] [PubMed] [Google Scholar]
  • 52.Meltzer R.H. et al. (2011) Lab Chip, 11, 863–873. [DOI] [PubMed] [Google Scholar]
  • 53.http://biopharmguy.com/diagnostics.php, accessed 20.02.2012.
  • 54.Becker H. (2010) Lab Chip, 10, 1894–1897. [DOI] [PubMed] [Google Scholar]
  • 55.Yager P., Edwards T., Fu E., Helton K., Nelson K., Tam M.R., and Weigl B.H. (2006) Nature, 442, 412–418. [DOI] [PubMed] [Google Scholar]
  • 56.http://www.xprise.org/prise-development/life-sciences#artificial, accessed 19.7.2011.

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES