Abstract
To celebrate 2015 as the ‘International Year of Light’, this article offers a short survey of the progress made since the award of the Nobel Prize of 1999 to Professor Ahmed Zewail for his pioneering work on taking the timescale for observation of light-induced events down to the femtosecond level. Developments have included the extension of studies (i) to larger molecules, leading up to biological systems; (ii) the increased range of detection methods of transient species from the UV-Vis to the infrared region; (iii) the introduction of Raman spectroscopy to augment IR studies; (iv) examination of combination events to supplement dissociation events; (v) the interrogation of transient structures by X-ray absorption spectroscopy; (vi) the study of reactions taking place at solid surfaces.
Keywords: combination, dissociation, femtosecond, flash photolysis, infrared, metal carbonyl, photoelectron spectroscopy, photoionisation, phytochrome, picosecond, protein dynamics, Raman, surface, transient, transition state, time-resolved infrared spectroscopy
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
11. References
- 1.Laidler K.J., and King M.C. (1983) J. Phys. Chem., 87, 2657. [Google Scholar]
- 2.Zewail A.H. (2000) J. Phys. Chem. A, 104, 5660. [Google Scholar]
- 3.Dantus M., Rosker M.J., and Zewail A.H. (1987) J. Chem. Phys., 87, 2395. [Google Scholar]
- 4.Polanyi J.C., and Zewail A.H. (1995) Acc. Chem. Res., 28, 119. [Google Scholar]
- 5.Stolow A., Bragg A.E., and Neumark D.M. (2004) Chem. Rev., 104, 1719. [DOI] [PubMed] [Google Scholar]
- 6.Assion A., Geisler M., Helbing J. et al. (1996) Phys. Rev. A, 54, R4605. [DOI] [PubMed] [Google Scholar]
- 7.Zanni M.T., Batista V.S., Greenblatt B.J. et al. (1999) J. Chem. Phys., 110, 3748. [Google Scholar]
- 8.Pederson S., Bañares L., and Zewail A.H. (1992) J. Chem. Phys., 97, 8801. [Google Scholar]
- 9.Poliakoff M., and Turner J.J. (1974) J. Chem. Soc., Dalton Trans., 2276. [Google Scholar]
- 10.Kim S.K., Pedersen S., and Zewail A.H. (1995) Chem. Phys. Lett., 233, 500. [Google Scholar]
- 11.Towrie M., Grills D.C., Dyer J. et al. (2003) Appl. Spectrosc., 57, 367. [DOI] [PubMed] [Google Scholar]
- 12.Greetham G.M., Burgos P., Cao Q. et al. (2010) Appl. Spectrosc., 64, 1311. [DOI] [PubMed] [Google Scholar]
- 13.Li J., Li G., Wang H., and Deng X.W. (2011) Arabidopsis Book, 9, e0148: http://www.bioone.org/doi/abs/10.1199/tab.0148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Büchler R., Hermann G., Lap D.V., and Rentsch S. (1995) Chem. Phys. Lett., 233, 514. [Google Scholar]
- 15.Brust R., Lukacs A., Haigney A. et al. (2013) J. Am. Chem. Soc., 135, 16168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Kim K.H., Kim J.G., Nozawa S. et al. (2015) Nature, 518, 385. [DOI] [PubMed] [Google Scholar]
- 17.öström H., öberg H., Xin H. et al. (2015) Science, 347, 978. [DOI] [PubMed] [Google Scholar]
- 18.McCusker J.K., and Vlček A. Jr (2015) Acc. Chem. Res., 48, 1207. [DOI] [PubMed] [Google Scholar]
- 19.Bertoni R., Cammarata M., Lorenc M. et al. (2015) Acc. Chem. Res., 48, 774. [DOI] [PubMed] [Google Scholar]
- 20.Iwamura M., Takeuchi S., and Tahara T. (2015) Acc. Chem. Res., 48, 782. [DOI] [PubMed] [Google Scholar]
- 21.Tavernelli I. (2015) Acc. Chem. Res., 48, 792. [DOI] [PubMed] [Google Scholar]
- 22.Chergui M. (2015) Acc. Chem. Res., 48, 801. [DOI] [PubMed] [Google Scholar]
- 23.Eng J., Gourlaouen C., Gindensperger E., and Daniel C. (2015) Acc. Chem. Res., 48, 809. [DOI] [PubMed] [Google Scholar]
- 24.Morseth Z.A., Wang L., Puodziukynaite E. et al. (2015) Acc. Chem. Res., 48, 818. [DOI] [PubMed] [Google Scholar]
- 25.Castellano F.N. (2015) Acc. Chem. Res., 48, 828. [DOI] [PubMed] [Google Scholar]
- 26.Hammarström L. (2015) Acc. Chem. Res., 48, 840. [DOI] [PubMed] [Google Scholar]
- 27.Wu K., Zhu H., and Lian T. (2015) Acc. Chem. Res., 48, 851. [DOI] [PubMed] [Google Scholar]
- 28.Rury A.S., Wiley T.E., and Sension R.J. (2015) Acc. Chem. Res., 48, 860. [DOI] [PubMed] [Google Scholar]
- 29.Vlček A. Jr, Kvaplikova H., Towrie M., and Záliš S. (2015) Acc. Chem. Res., 48, 868. [DOI] [PubMed] [Google Scholar]
- 30.Chisholm M.H., Brown-Xu S.E., and Spilker T.F. (2015) Acc. Chem. Res., 48, 877. [DOI] [PubMed] [Google Scholar]
- 31.King A.W., Wang L., and Rack J.J. (2015) Acc. Chem. Res., 48, 1115. [DOI] [PubMed] [Google Scholar]
- 32.Kiefer L.M., King J.T., and Kubarych K.J. (2015) Acc. Chem. Res., 48, 1123. [DOI] [PubMed] [Google Scholar]
- 33.Delor M., Sazanovich I.V., Towrie M., and Weinstein J.A. (2015) Acc. Chem. Res., 48, 1131. [DOI] [PubMed] [Google Scholar]
- 34.Zhang W., and Gaffney K.J. (2015) Acc. Chem. Res., 48, 1140. [DOI] [PubMed] [Google Scholar]
- 35.Milot R.L., and Schuttenmaer C.A. (2015) Acc. Chem. Res., 48, 1423. [DOI] [PubMed] [Google Scholar]
- 36.Rondi A., Rodriguez Y., Feuer T., and Cannizzo A. (2015) Acc. Chem. Res., 48, 1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Jakubikova E., and Bowman D.N. (2015) Acc. Chem. Res., 48, 1441. [DOI] [PubMed] [Google Scholar]
