Abstract
Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.
Keywords: site-specific recombination, DNA gyrase, DNA supercoiling, DNA topoisomerase, nucleoid-associated proteins, bacteriophage lambda, type 1 fimbriae
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
9. References
- 1.Brzuszkiewicz E., Gottschalk G., Ron E. et al. (2009) Genome Dyn., 6, 110–125. [DOI] [PubMed] [Google Scholar]
- 2.Dorman C.J. (2009) Front. Biosci., 14, 4103–4112. [DOI] [PubMed] [Google Scholar]
- 3.Siguier P., Gourbeyre E., Varani A. et al. (2015) Microbiol. Spectr., 3, MDNA3-0030-2014. [DOI] [PubMed] [Google Scholar]
- 4.Cairns J., Overbaugh J., and Miller S. (1988) Nature, 335, 142–145. [DOI] [PubMed] [Google Scholar]
- 5.Foster P.L. (2005) Mutat. Res., 569, 3–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Hall B.G. (1991) New Biol., 3, 729–733. [PubMed] [Google Scholar]
- 7.Lenski R.E., and Sniegowski P.D. (1995) Curr. Biol., 5, 97–99. [DOI] [PubMed] [Google Scholar]
- 8.Massey R.C., Rainey P.B., Sheehan B.J. et al. (1999) Curr. Biol., 9, 1477–1480. [DOI] [PubMed] [Google Scholar]
- 9.Rosenberg S.M., Thulin C., and Harris R.S. (1998) Genetics, 148, 1559–1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Wright B.E. (2004) Mol. Microbiol., 52, 643–650. [DOI] [PubMed] [Google Scholar]
- 11.Sandmeier H. (1994) Mol. Microbiol., 12, 343–350. [DOI] [PubMed] [Google Scholar]
- 12.Olorunniji F.J., Rosser S.J., and Stark W.M. (2016) Biochem. J., 473, 673–684. [DOI] [PubMed] [Google Scholar]
- 13.Bell J.C., and Kowalczykowski S.C. (2016) Trends Biochem. Sci., 41, 491–507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Godin S.K., Sullivan M.R., and Bernstein K.A. (2016) Biochem. Cell. Biol., 31, 1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.McKown R.L., Orle K.A., Chen T., and Craig N.L. (1988) J. Bacteriol., 170, 352–358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Hwang W.C., Golden J.W., Pascual J. et al. (2014) Proteins, doi: 10.1002/prot.24679. [Google Scholar]
- 17.Rice P.A. (2015) Microbiol. Spectr., 3, MDNA3-0045-2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Smith M.C. (2015) Microbiol. Spectr., 3, MDNA3-0059-2014. [Google Scholar]
- 19.Landy A. (1993) Curr. Opin. Genet. Dev., 3, 699–707. [DOI] [PubMed] [Google Scholar]
- 20.Landy A. (2015) Microbiol. Spectr., 3, MDNA3-0051-2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Singh S., Rockenbach K., Dedrick R.M. et al. (2014) J. Mol. Biol., 426, 318–331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Kelly A., Conway C., Ó Cróinín T. et al. (2006) J. Bacteriol., 188, 5356–5363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Bushman W., Yin S., Thio L.L., and Landy A. (1984) Cell, 39, 699–706. [DOI] [PubMed] [Google Scholar]
- 24.Kitts P., Richet E., and Nash H.A. (1984) Cold Spring Harb. Symp. Quant. Biol., 49, 735–744. [DOI] [PubMed] [Google Scholar]
- 25.Richet E., Abcarian P., and Nash H.A. (1986) Cell, 46, 1011–1021. [DOI] [PubMed] [Google Scholar]
- 26.Bliska J.B., and Cozzarelli N.R. (1987) J. Mol. Biol., 194, 205–218. [DOI] [PubMed] [Google Scholar]
- 27.Crisona N.J., Weinberg R.L., Peter B.J. et al. (1999) J. Mol. Biol., 289, 747–775. [DOI] [PubMed] [Google Scholar]
- 28.Dillon S.C., and Dorman C.J. (2010) Nature Rev. Microbiol., 8, 185–195. [DOI] [PubMed] [Google Scholar]
- 29.Dorman C.J., and Dorman M.J. (2016) Biophys Rev., 8, 209–220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Vinograd J., Lebowitz J., Radloff R. et al. (1965) Proc. Natl Acad. Sci. USA, 53, 1104–1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Bauer W.R., Crick F.H.C., and White J.H. (1980) Sci. Am., 243, 100–113. [PubMed] [Google Scholar]
- 32.Boles T.C., White J.H., and Cozzarelli N.R. (1990) J. Mol. Biol., 213, 931–951. [DOI] [PubMed] [Google Scholar]
- 33.Higgins N.P., and Vologodskii A.V. (2015) Topological behavior of plasmid DNA. Microbiol. Spectr., 3, doi: 10.1128/microbiolspec.PLAS-0036-2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Bates A.D., and Maxwell A. (2005) DNA topology. Oxford University Press, Oxford. [Google Scholar]
- 35.Gellert M., Mizuuchi K., O'Dea M.H., and Nash H.A. (1976) Proc. Natl Acad. Sci. USA, 73, 3872–3876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Higgins N.P., Peebles C.L., Sugino A., and Cozzarelli N.R. (1978) Proc. Natl Acad. Sci. USA, 75, 1773–1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Mizuuchi K., O'Dea M.H., and Gellert M. (1978) Proc. Natl Acad. Sci. USA, 75, 5960–5963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Menzel R., and Gellert M. (1983) Cell, 34, 105–113. [DOI] [PubMed] [Google Scholar]
- 39.Menzel R., and Gellert M. (1987) Proc. Natl Acad. Sci. USA, 84, 4185–4189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Straney R., Krah R., and Menzel R. (1994) J. Bacteriol., 176, 5999–6006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Unniraman S., and Nagaraja V. (1999) Genes Cells, 4, 697–706. [DOI] [PubMed] [Google Scholar]
- 42.Unniraman S., Chatterji M., and Nagaraja V. (2002) J. Bacteriol., 184, 5449–5456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Champoux J.J. (1978) Annu. Rev. Biochem., 47, 449–479. [DOI] [PubMed] [Google Scholar]
- 44.Tse-Dinh Y.C. (1994) Adv. Pharmacol., 29A, 21–37. [DOI] [PubMed] [Google Scholar]
- 45.Terekhova K., Marko J.F., and Mondragón A. (2013) Biochem. Soc. Trans., 41, 571–575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Tse-Dinh Y.C. (1985) Nucleic Acids Res., 13, 4751–4763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Bates A.D., and Maxwell A. (2007) Biochemistry, 46, 7929–7941. [DOI] [PubMed] [Google Scholar]
- 48.Zawadzki P., Stracy M., Ginda K. et al. (2015) Cell Rep., 13, 2587–2596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Zechiedrich E.L., Khodursky A.B., Bachellier S. et al. (2000) J. Biol. Chem., 275, 8103–8113. [DOI] [PubMed] [Google Scholar]
- 50.Nurse P., Levine C., Hassing H., and Marians K.J. (2003) J. Biol. Chem., 278, 8653–8660. [DOI] [PubMed] [Google Scholar]
- 51.Perez-Cheeks B.A., Lee C., Hayama R., and Marians K.J. (2012) Mol. Microbiol., 86, 1007–1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Westerhoff H.V., and van Workum M. (1990) Biomed. Biochim. Acta, 49, 839–853. [PubMed] [Google Scholar]
- 53.Hsieh L.S., Burger R.M., and Drlica K. (1991) J. Mol. Biol., 219, 443–450. [DOI] [PubMed] [Google Scholar]
- 54.Hsieh L.S., Rouvière-Yaniv J., and Drlica K. (1991) J. Bacteriol., 173, 3914–3917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.van Workum M., van Dooren S.J., Oldenburg N. et al. (1996) Mol. Microbiol., 20, 351–360. [DOI] [PubMed] [Google Scholar]
- 56.Snoep J.L., van der Weijden C.C., Andersen H.W. et al. (2002) Eur. J. Biochem., 269, 1662–1669. [DOI] [PubMed] [Google Scholar]
- 57.Conter A., Menchon C., and Gutierrez C. (1997) J. Mol. Biol., 273, 75–83. [DOI] [PubMed] [Google Scholar]
- 58.Dorman C.J., Barr G.C., Ní Bhriain N., and Higgins C.F. (1988) J. Bacteriol., 170, 2816–2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Nash H.A., and Robertson C.A. (1981) J. Biol. Chem., 256, 9246–9253. [PubMed] [Google Scholar]
- 60.Gardner J.F., and Nash H.A. (1986) J. Mol. Biol., 191, 181–189. [DOI] [PubMed] [Google Scholar]
- 61.Koch C., and Kahmann R. (1986) J. Biol. Chem., 261, 15673–15678. [PubMed] [Google Scholar]
- 62.Johnson R.C., Glasgow A.C., and Simon M.I. (1987) Nature, 329, 462–465. [DOI] [PubMed] [Google Scholar]
- 63.Seah N.E., Warren D., Tong W. et al. (2014) Proc. Natl Acad. Sci. USA, 111, 12372–12377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Bruist M.F., Glasgow A.C., Johnson R.C., and Simon M.I. (1987) Genes Dev., 1, 762–772. [DOI] [PubMed] [Google Scholar]
- 65.Hübner P., Haffter P., Iida S., and Arber W. (1989) J. Mol. Biol., 205, 493–500. [DOI] [PubMed] [Google Scholar]
- 66.Thompson J.F., Moitoso de Vargas L., Koch C. et al. (1987) Cell, 50, 901–908. [DOI] [PubMed] [Google Scholar]
- 67.Ball C.A., and Johnson R.C. (1991) J. Bacteriol., 173, 4027–4031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Kelly A., Goldberg M.D., Carroll R.K. et al. (2004) Microbiology, 150, 2037–2053. [DOI] [PubMed] [Google Scholar]
- 69.Cho B.K., Knight E.M., Barrett C.L., and Palsson B.Ø. (2008) Genome Res., 18, 900–910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Mangan M.W., Lucchini S., Danino V. et al. (2006) Mol. Microbiol., 59, 1831–1847. [DOI] [PubMed] [Google Scholar]
- 71.Prieto A.I., Kahramanoglou C., Ali R.M. et al. (2012) Nucleic Acids Res., 40, 3524–3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Nilsson L., Vanet A., Vijgenboom E., and Bosch L. (1990) EMBO J., 9, 727–734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Ball C.A., Osuna R., Ferguson K.C., and Johnson R.C. (1992) J. Bacteriol., 174, 8043–8056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Cameron A.D., Kröger C., Quinn H.J. et al. (2013) PLoS One, 8, e84382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Bushman W., Thompson J.F., Vargas L., and Landy A. (1985) Science, 230, 906–911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Ditto M.D., Roberts D., and Weisberg R.A. (1994) J. Bacteriol., 176, 3738–3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Miller H.I., and Friedman D.I. (1980) Cell, 20, 711–719. [DOI] [PubMed] [Google Scholar]
- 78.Nash H.A., Robertson C.A., Flamm E. et al. (1987) J. Bacteriol., 169, 4124–4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Mendelson I., Haluzi H., Koby S., and Oppenheim A.B. (1991) J. Bacteriol., 173, 5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Zulianello L., de la Gorgue de Rosny E., van Ulsen P. et al. (1994) EMBO J., 13, 1534–1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Aviv M., Giladi H., Schreiber G. et al. (1994) Mol. Microbiol., 14, 1021–1031. [DOI] [PubMed] [Google Scholar]
- 82.Wegleńska A., Jacob B., and Sirko A. (1996) Gene, 181, 85–88. [DOI] [PubMed] [Google Scholar]
- 83.Stella S., Cascio D., and Johnson R.C. (2010) Genes Dev., 24, 814–826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Rice P.A., Yang S., Mizuuchi K., and Nash H.A. (1996) Cell, 87, 1295–1306. [DOI] [PubMed] [Google Scholar]
- 85.Sun D., Hurley L.H., and Harshey R.M. (1996) Biochemistry, 35, 10815–10827. [DOI] [PubMed] [Google Scholar]
- 86.Engelhorn M., and Geiselmann J. (1998) Mol. Microbiol., 30, 431–441. [DOI] [PubMed] [Google Scholar]
- 87.Weinreich M.D., and Reznikoff W.S. (1992) J. Bacteriol., 174, 4530–4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Chalmers R., Guhathakurta A., Benjamin H., and Kleckner N. (1998) Cell, 93, 897–908. [DOI] [PubMed] [Google Scholar]
- 89.Swinger K.K., and Rice P.A. (2007) J. Mol. Biol., 365, 1005–1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Johnson R.C., Bruist M.F., and Simon M.I. (1986) Cell, 46, 531–539. [DOI] [PubMed] [Google Scholar]
- 91.Wada M., Kutsukake K., Komano T. et al. (1989) Gene, 76, 345–352. [DOI] [PubMed] [Google Scholar]
- 92.Haykinson M.J., and Johnson R.C. (1993) EMBO J., 12, 2503–2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Hillyard D.R., Edlund M., Hughes K.T. et al. (1990) J. Bacteriol., 172, 5402–5407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Kohno K., Wada M., Kano Y., and Imamoto F. (1990) J. Mol. Biol., 213, 27–36. [DOI] [PubMed] [Google Scholar]
- 95.Mangan M.W., Lucchini S., Ó Cróinín T. et al. (2011) Microbiology, 157, 1075–1087. [DOI] [PubMed] [Google Scholar]
- 96.Claret L., and Rouvière-Yaniv J. (1997) J. Mol. Biol., 273, 93–104. [DOI] [PubMed] [Google Scholar]
- 97.Tanaka H., Goshima N., Kohno K. et al. (1993) J. Biochem., 113, 568–572. [DOI] [PubMed] [Google Scholar]
- 98.Brinkman A.B., Ettema T.J., de Vos W.M., and van der Oost J. (2003) Mol. Microbiol., 48, 287–294. [DOI] [PubMed] [Google Scholar]
- 99.Peterson S.N., and Reich N.O. (2010) Bacterial Chromatin, pp. 353–364. Springer, Heidelberg. [Google Scholar]
- 100.Landgraf J.R., Wu J., and Calvo J.M. (1996) J. Bacteriol., 178, 6930–6936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Roesch P.L., and Blomfield I.C. (1998) Mol. Microbiol., 27, 751–761. [DOI] [PubMed] [Google Scholar]
- 102.Oppenheim A.B., Kobiler O., Stavans J. et al. (2005) Annu. Rev. Genet., 39, 409–429. [DOI] [PubMed] [Google Scholar]
- 103.Craig N.L., and Nash H.A. (1983) Cell, 35, 795–803. [DOI] [PubMed] [Google Scholar]
- 104.Han Y.W., Gumport R.I., and Gardner J.F. (1994) J. Mol. Biol., 235, 908–925. [DOI] [PubMed] [Google Scholar]
- 105.Hoess R.H., Foeller C., Bidwell K., and Landy A. (1980) Proc. Natl Acad. Sci. USA, 77, 2482–2486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Kikuchi Y., and Nash H.A. (1979) Proc. Natl Acad. Sci. USA, 76, 3760–3764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Nash H.A. (1990) Trends Biochem. Sci., 15, 222–227. [DOI] [PubMed] [Google Scholar]
- 108.Norregaard K., Andersson M., Sneppen K., (2013) Proc. Natl Acad. Sci. USA, 110, 17386–17391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Schwan W.R. (2011) World J. Clin. Infect. Dis., 1, 17–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.McFarland K.A., and Dorman C.J. (2008) Microbiology, 154, 2008–2016. [DOI] [PubMed] [Google Scholar]
- 111.McFarland K.A., Lucchini S., Hinton J.C., and Dorman C.J. (2008) J. Bacteriol., 190, 602–612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Abraham J.M., Freitag C.S., Clements J.R., and Eisenstein B.I. (1985) Proc. Natl Acad. Sci. USA, 82, 5724–5727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Dorman C.J., and Higgins C.F. (1987) J. Bacteriol., 169, 3840–3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Eisenstein B.I., Sweet D.S., Vaughn V., and Friedman D.I. (1987) Proc. Natl Acad. Sci. USA, 84, 6506–6510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Burns L.S., Smith S.G., and Dorman C.J. (2000) J. Bacteriol., 182, 2953–2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.McCusker M.P., Turner E.C., and Dorman C.J. (2008) Mol. Microbiol., 67, 171–187. [DOI] [PubMed] [Google Scholar]
- 117.Smith S.G., and Dorman C.J. (1999) Mol. Microbiol., 34, 965–979. [DOI] [PubMed] [Google Scholar]
- 118.McClain M.S., Blomfield I.C., and Eisenstein B. I. (1991) J. Bacteriol., 173, 5308–5314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Gally D.L., Leathart J., and Blomfield I.C. (1996) Mol. Microbiol., 21, 725–738. [DOI] [PubMed] [Google Scholar]
- 120.Joyce S.A., and Dorman C.J. (2002) Mol. Microbiol., 45, 1107–1117. [DOI] [PubMed] [Google Scholar]
- 121.Hinde P., Deighan P., and Dorman C.J. (2005) J. Bacteriol., 187, 8256–8266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Fogg P.C., Colloms S., Rosser S. et al. (2014) J. Mol. Biol., 426, 2703–2716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Dove S.L., and Dorman C.J. (1994) Mol. Microbiol., 14, 975–988. [DOI] [PubMed] [Google Scholar]
- 124.Beloin C., Valle J., Latour-Lambert P. et al. (2004) Mol. Microbiol., 51, 659–674. [DOI] [PubMed] [Google Scholar]
- 125.Dove S.L., Smith S.G., and Dorman C.J. (1997) Mol. Gen. Genet., 254, 13–20. [DOI] [PubMed] [Google Scholar]
- 126.Corcoran C.P., and Dorman C.J. (2009) Mol. Microbiol., 74, 1071–1082. [DOI] [PubMed] [Google Scholar]
- 127.Blomfield I.C., Kulasekara D.H., and Eisenstein B.I. (1997) Mol. Microbiol., 23, 705–717. [DOI] [PubMed] [Google Scholar]
- 128.Gally D.L., Rucker T.J., and Blomfield I.C. (1994) J. Bacteriol., 176, 5665–5672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Blomfield I.C., Calie P.J., Eberhardt K.J. et al. (1993) J. Bacteriol., 175, 27–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Ritter A., Gally D.L., Olsen P.B. et al. (1997) Mol. Microbiol., 25, 871–882. [DOI] [PubMed] [Google Scholar]
- 131.Müller C.M., Aberg A., Straseviçiene J. et al. (2009) PLoS Pathog., 5, e1000303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.O'Byrne C.P., and Dorman C.J. (1994) J. Bacteriol., 176, 905–912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.O'Gara J.P., and Dorman C.J. (2000) Mol. Microbiol., 36, 457–466. [DOI] [PubMed] [Google Scholar]
- 134.Aznar S., Paytubi S., and Juárez A. (2013) Microbiology, 159, 545–554. [DOI] [PubMed] [Google Scholar]
- 135.Falconi M., Brandi A., La Teana A. et al. (1996) Mol. Microbiol., 19, 965–975. [DOI] [PubMed] [Google Scholar]
- 136.Sherratt D.J., Arciszewska L.K., Blakely G. et al. (1995) Phil. Trans. R. Soc. B, 347, 37–42. [DOI] [PubMed] [Google Scholar]
- 137.Waters J.L., and Salyers A.A. (2013) MBio, 4, e00569–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Yarmolinsky M., and Hoess R. (2015) Annu. Rev. Virol., 2, 25–40. [DOI] [PubMed] [Google Scholar]
- 139.Okazaki N., Matsuo S., Saito K. et al. (1993) J. Bacteriol., 175, 758–766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Bonifield H.R., and Hughes K.T. (2003) J. Bacteriol., 185, 3567–3574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Glasgow A.C., Bruist M.F., and Simon M.I. (1989) J. Biol. Chem., 264, 10072–10082. [PubMed] [Google Scholar]