Skip to main content
Science Progress logoLink to Science Progress
. 2011 Sep 1;94(3):245–264. doi: 10.3184/003685011X13139280383942

Specific T-cell Activation in an Unspecific T-cell Repertoire

Hugo A Van Den Berg 1,, Carmen Molina-París 2,, Andrew K Sewell 3,
PMCID: PMC10365486  PMID: 22026148

Abstract

T-cells are a vital type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections. They recognise disease-associated antigens via a surface receptor called the T-cell antigen receptor (TCR). If there were a specific TCR for every single antigen, no mammal could possibly contain all the T-cells it needs. This is clearly absurd and suggests that T-cell recognition must, to the contrary, be highly degenerate. Yet highly promiscuous TCRs would appear to be equally impossible: they are bound to recognise self as well as non-self antigens. We review how contributions from mathematical analysis have helped to resolve the paradox of the promiscuous TCR. Combined experimental and theoretical work shows that TCR degeneracy is essentially dynamical in nature, and that the T-cell can differentially adjust its functional sensitivity to the salient epitope, “tuning up” sensitivity to the antigen associated with disease and “tuning down” sensitivity to antigens associated with healthy conditions. This paradigm of continual modulation affords the TCR repertoire, despite its limited numerical diversity, the flexibility to respond to almost any antigenic challenge while avoiding autoimmunity.

Keywords: T-cell activation, T-cell antigen receptor, mathematical modelling, TCR repertoire, co-receptor, costimulation

Full Text

The Full Text of this article is available as a PDF (273.2 KB).

References

  • 1.Parham P. (2000) The immune system. Garland Publishing, New York. [Google Scholar]
  • 2.Utzny C., and Burroughs N.J. (2001) Bull. Math. Biol., 63, 685–713. [DOI] [PubMed] [Google Scholar]
  • 3.van denBerg H.A., and Kiselev Y.N. (2004) Bull. Math. Biol., 66, 1345–1369. [DOI] [PubMed] [Google Scholar]
  • 4.Davis S.J., Ikemizu S., Evans E.J., Fugger L., Bakker T.R., and van der Merwe P.A. (2003) Nature Immunol., 4, 1–8. [DOI] [PubMed] [Google Scholar]
  • 5.Stevanovi S., and Schild H. (1999) Semin. Immunol., 11, 375–384. [DOI] [PubMed] [Google Scholar]
  • 6.Burroughs N.J., Kesmir C., and de Boer R. (2004) Immunogenetics, 56, 311–320. [DOI] [PubMed] [Google Scholar]
  • 7.Werlen G., and Palmer E. (2002) Curr. Opin. Immunol., 14, 299–305. [DOI] [PubMed] [Google Scholar]
  • 8.Rammensee H.-G., Falk K., and Rötzschke O. (1993) Ann. Rev. Immunol., 11, 213–244. [DOI] [PubMed] [Google Scholar]
  • 9.Matzinger P. (2002) Science, 296, 301–305. [DOI] [PubMed] [Google Scholar]
  • 10.Arstila T.P., Casrouge A., Baron V., Even J., Kanellopoulos J., and Kourilsky P. (1999) Science, 286, 958–961. [DOI] [PubMed] [Google Scholar]
  • 11.Mason D. (1998) Immunol. Today, 19, 395–404. [DOI] [PubMed] [Google Scholar]
  • 12.Ignatowicz L., Rees W., Pacholczyk R., Ignatowicz H., Kushnir E., Kappler J., and Marrack P. (1997) Immunity, 7, 179–186. [DOI] [PubMed] [Google Scholar]
  • 13.Jameson S.R., and Bevan M.J. (1998) Curr. Opin. Immunol., 10, 214–219. [DOI] [PubMed] [Google Scholar]
  • 14.Acuto O., and Michel F. (2003) Nature Rev. Immunol., 12, 939–951. [DOI] [PubMed] [Google Scholar]
  • 15.Hutchinson S.L., Wooldridge L., Tafuro S., Laugel B., Glick M., Boulter J.M., Jakobsen B.K., Price D.A., and Sewell A.K. (2003) J. Biol. Chem., 278, 24285–24293. [DOI] [PubMed] [Google Scholar]
  • 16.Pecht I., and Gakamsky D.M. (2005) FEBS Lett., 579, 3336–3341. [DOI] [PubMed] [Google Scholar]
  • 17.Maile R., Siler C.A., Kerry S.E., Midkiff K.E., Collins E.J., and Frelinger J.A. (2005) Peripheral. J. Immunol., 174, 619–627. [DOI] [PubMed] [Google Scholar]
  • 18.Laugel B., van den Berg H.A., Gostick E., Cole D.K., Wooldridge L., Boulter J., Milicic A., Price D.A., and Sewell A.K. (2007) J. Biol. Chem., 282, 23799–23810. [DOI] [PubMed] [Google Scholar]
  • 19.Wooldridge L., Lissina A., Vernazza J., Gostick E., Laugel B., Hutchinson S.L., Mirza F., Dunbar P.R., Boulter J.M., Glick M., Cerundolo V., van den Berg H.A., Price D.A., and Sewell A.K. (2007) Eur. J. Immunol., 37, 1323–1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Wooldridge L., Laugel B., Ekeruche J., Clement M., van den Berg H.A., Price D.A., and Sewell A.K. (2010) CD8 controls T cell cross-reactivity. J. Immunol., 185, 4625–4632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.van den Berg H.A., and Rand D.A. (2007) Immunol. Rev., 216, 81–92. [DOI] [PubMed] [Google Scholar]
  • 22.Molina-París C., and Lythe G. (eds). (2011) Mathematical models and immune cell biology. Springer Verlag, New York. [Google Scholar]
  • 23.Alexander-Miller M.A. (2000) Cell. Immunol., 201, 58–62. [DOI] [PubMed] [Google Scholar]
  • 24.Zint N., Baake E., and den Hollander F. (2008) J. Math. Biol., 57, 841–861. [DOI] [PubMed] [Google Scholar]
  • 25.Lipsmeier F., and Baake E. (2009) J. Stat. Phys., 134, 537–566. [Google Scholar]
  • 26.Itoh Y., and Germain R.N. (1997) J. Exp. Med., 186, 757–766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Bachmann M.F., Barner M., and Kopf M. (1999) CD2 sets quantitative thresholds in T cell activation. J. Exp. Med., 190, 1383–1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ostergaard H.L., and Trowbridge I.S. (1990) Coclustering CD45 with CD4 or CD8 alters the phosphorylation and kinase activity of p56lck. J. Exp. Med., 172, 347–350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Azzam H.S., DeJarnette J.B., Huang K., Emmons R., Park C.S., Sommers C.L., El-Khoury D., Shores E.W., and Love P.E. (2001) J. Immunol., 166, 5464–5472. [DOI] [PubMed] [Google Scholar]
  • 30.Hermiston M.L., Xu Z., and Weiss A. (2003) Annu. Rev. Immunol., 21, 107–137. [DOI] [PubMed] [Google Scholar]
  • 31.van den Berg H.A., and Sewell A.K. (2011) In: Molina-París C., and Lythe G. (eds), Mathematical models and immune cell biology. Springer-Verlag, Berlin. [Google Scholar]
  • 32.Collins A.V., Brodie D.W., Gilbert R.J.C., Iaboni A., Manso-Sancho R., Stuart D.I., van der Merwe P.A., and Davis S.J. (2002) Immunity, 17, 201–210. [DOI] [PubMed] [Google Scholar]
  • 33.Sansom D.M., Manzotti C.N., and Zheng Y. (2003) TRENDS Immunol., 24, 313–318. [DOI] [PubMed] [Google Scholar]
  • 34.Zheng Y., Manzotti C.N., Liu M., Burke F., Mead K.I., and Sansom D.M. (2004) J. Immunol., 172, 2778–2784. [DOI] [PubMed] [Google Scholar]
  • 35.Wooldridge L., van den Berg H.A., Glick M., Gostick E., Brenchley J.M., Douek D.C., Price D.A., and Sewell A.K. (2005) J. Biol. Chem., 280, 27491–27501, 200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.van den Berg H.A., Wooldridge L., Laugel B., and Sewell A.K. (2007) J. Theor. Biol., 249, 395–408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Purbhoo M.A., Boulter J.M., Price D.A., Vuidepot A.-L., Hourigan C.S., Dunbar P.R., Olson K., Dawson S.J., Phillips R.E., Jakobsen B.K., Bell J.I., and Sewell A.K. (2001) J. Biol. Chem., 276, 32786–32792. [DOI] [PubMed] [Google Scholar]
  • 38.Park J.-H., Adoro S., Lucas P.J., Sarafova S.D., Alag A.S., Doan L.L., Erman B., Liu X., Ellmeier W., Bosselut R., Feigenbaum L., and Singer A. (2007) Nature Immunol., 8, 1049–1058. [DOI] [PubMed] [Google Scholar]
  • 39.Anderton S.M., and Wraith D.C. (2002) Nature Rev. Immunol., 2, 487–497. [DOI] [PubMed] [Google Scholar]
  • 40.Kappler J.W., Roehm N., and Marrack P. (1987) Cell, 49, 273–280. [DOI] [PubMed] [Google Scholar]
  • 41.Noest A.J. (2000) J. Theor. Biol., 207, 195–216. [DOI] [PubMed] [Google Scholar]
  • 42.van den Berg H.A., and Rand D.A. (2003) J. Theor. Biol., 224, 249–267. [DOI] [PubMed] [Google Scholar]
  • 43.Mason D. (2001) Immunol. Rev., 182, 80–88. [DOI] [PubMed] [Google Scholar]
  • 44.Seddon B., and Mason D. (2000) Immunol. Today, 21, 95–99. [DOI] [PubMed] [Google Scholar]
  • 45.van den Berg H.A., and Molina-París C. (2003) J. Theor. Med., 5, 1–22. [Google Scholar]
  • 46.van den Berg H.A., and Rand D.A. (2004) J. Theor. Biol., 231, 535–548. [DOI] [PubMed] [Google Scholar]
  • 47.van den Berg H.A., and Rand D.A. (2004) J. Theor. Biol., 228, 397–416. [DOI] [PubMed] [Google Scholar]
  • 48.McGlade J. (ed.), (1999) Advanced ecological theory. Blackwell, New York. [Google Scholar]
  • 49.Dembo A., and Zeitouni O. (1998) Large deviations techniques and applications. Springer Verlag, New York. [Google Scholar]
  • 50.Stirk E.R., Molina-París C., and van den Berg H.A. (2008) J. Theor. Biol., 255, 237–249. [DOI] [PubMed] [Google Scholar]
  • 51.Toda M., Kubo R., and Saitô N. (1998) Statistical physics. Springer Verlag, New York. [Google Scholar]
  • 52.Stirk E.R., Lythe G., van den Berg H.A., Hurst G.A.D., and Molina-París C. (2010) Math. Biosci., 224, 74–86. [DOI] [PubMed] [Google Scholar]
  • 53.Stirk E.R., Lythe G., van den Berg H.A., and Molina-París C. (2010) J. Theor. Biol., 265, 396–410. [DOI] [PubMed] [Google Scholar]
  • 54.van Doorn E.A. (1991) Adv. Appl. Prob., 23, 683–700. [Google Scholar]
  • 55.Tanchot C., Lemonnier F.A., Pérarnau B., Freitas A.A., and Rocha B. (1997) Science, 276, 2057–2062. [DOI] [PubMed] [Google Scholar]
  • 56.Veiga-Fernandes H., Walter U., Bourgeois C., McLean A., and Rocha B. (2000) Nature Immunol., 1, 47–53. [DOI] [PubMed] [Google Scholar]
  • 57.van den Berg H.A. (2011) Mathematical models of biological systems. Oxford University Press. [Google Scholar]
  • 58.van den Berg H.A., Burroughs N.J., and Rand D.A. (2002) Bull. Mater. Biol., 64, 781–808. [DOI] [PubMed] [Google Scholar]
  • 59.Taylor H.M., and Karlin S. (1998) An introduction to stochastic modelling. Academic Press. [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES