Abstract
Platinum-based chemotherapeutic drugs such as cisplatin, carboplatin and oxaliplatin are widely applied for the treatment of various types of tumours. Over the last few decades, a large variety of Pt(II) and Pt(IV) complexes have been developed to improve the applicability in a wider spectrum of cancers, increase their therapeutic window and reduce the dose-limiting side effects. Photodynamic therapy (PDT), which is the administration of a photosensitiser followed by visible light activation, is a promising route to avoid damage to healthy cells and the surrounding tissue. Transition metal complexes as photochemotherapeutic agents are an attractive option for further development in the field of photoactivated chemotherapy (PACT). These complexes exhibit different numbers and types of excited states which are easily accessible upon light irradiation, subsequently giving rise to the formation of various photoproducts that can enable a distinct mode of action. Platinum – diazido complexes are promising candidates for PACT due to the low cytotoxicity when irradiated with visible light. This review summarises the mode of action of current platinum anticancer drugs with cisplatin as a lead example and the development of non-conventional Pt(II) complexes. Background information regarding PDT, the photophysical and photochemical properties of metal complexes is provided, as well as notable examples of photoactivated metal complexes with biological activity. Particular emphasis is placed on recent developments on platinum photoactivated drugs.
Keywords: anticancer drugs, cisplatin, photodynamic therapy, photoactivated chemotherapy, metal complexes, photochemistry, platinum, azides, prodrug, phototoxicity, irradiation
Full Text
The Full Text of this article is available as a PDF (4.0 MB).
References
- 1.King R.J.B., and Robins M.W. (2006) Cancer biology. Pearson Education Limited, Harlow. [Google Scholar]
- 2.CRUK (2013) Cancer statistics key facts.
- 3.Jemal A., Bray F., and Ferlay J. (2011) CA-Cancer J. Clin., 61, 69–90. [DOI] [PubMed] [Google Scholar]
- 4.Teni B., Pantos A., Bellis E., and Christofis P. (2007) Cancer Therapy, 5, 537–583. [Google Scholar]
- 5.Harper B.W., Krause-Heuer A.M., Grant M.P., Manohar M., Garbutcheon-Singh K.B., and Aldrich-Wright J.R. (2010) Chem. Eur. J., 16, 7064–7077. [DOI] [PubMed] [Google Scholar]
- 6.Rosenberg B., Van Camp L., and Krigas T. (1965) Nature, 2, 698–699. [DOI] [PubMed] [Google Scholar]
- 7.Rosenberg B., Vancamp L., Trosko J.E., and Mansour V.H. (1969) Nature, 205, 698–699. [Google Scholar]
- 8.Fricker S.P. (2007) Dalton Trans., 4903–4917. [DOI] [PubMed] [Google Scholar]
- 9.Johnstone T.C., Wilson J.J., and Lippard S.J. (2013) Inorg. Chem., (in press). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Kelland L. (2007) Nat. Rev. Cancer, 7, 573–584. [DOI] [PubMed] [Google Scholar]
- 11.Malinge J.M., Giraud-Panis M.J., and Leng M. (1999) J. Inorg. Biochem., 77, 23–29. [DOI] [PubMed] [Google Scholar]
- 12.Zhu G., Song L., and Lippard S.J. (2013) Cancer Res., 73, 4451–4460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Ober M., and Lippard S.J. (2008) J. Am. Chem. Soc., 130, 2851–2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Florea A.-M., and Büsselberg D. (2011) Cancers, 3, 1351–1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Romero-Canelón I., and Sadler P.J. (2014) Inorg. Chem., 52, 12276–12291. [DOI] [PubMed] [Google Scholar]
- 16.Arnesano F., Losacco M., and Natile G. (2013) Eur. J. Inorg. Chem., 2013, 2701–2711. [Google Scholar]
- 17.Hall M.D., Okabe M., Shen D.-W., Liang X.-J., and Gottesman M.M. (2008) Annu. Rev. Pharmacol. Toxicol., 48, 495–535. [DOI] [PubMed] [Google Scholar]
- 18.Boulikas T. (2007) Cancer Ther., 5, 351–376. [Google Scholar]
- 19.Reedijk J. (2009) Eur. J. Inorg. Chem., 2009, 1303–1312. [Google Scholar]
- 20.Pinto A.L., and Lippard S.J. (1985) Proc. Natl. Acad. Sci. USA, 82, 4616–4619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Hollis L.S., Amundsen A.R., and Stern E.W. (1989) J. Med. Chem., 32, 128–136. [DOI] [PubMed] [Google Scholar]
- 22.Lovejoy K.S., Serova M., Bieche I., Emami S., D'Incalci M., Broggini M., Erba E., Gespach C., Cvitkovic E., Faivre S., Raymond E., and Lippard S.J., (2011) Mol. Cancer Ther., 10, 1709–1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Lovejoy K.S., Todd R.C., Zhang S., Mccormick M.S., Aquino J.A.D., Reardon J.T., Sancar A., Giacomini K.M., and Lippard S.J. (2008) Proc. Natl. Acad. Sci. USA, 105, 8902–8907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Zhu G., Myint M., Ang W.H., Song L., and Lippard S.J. (2012) Cancer Res., 72, 790–800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Park G.Y., Wilson J.J., Song Y., and Lippard S.J. (2012) Proc. Natl. Acad. Sci. USA, 109, 11987–11992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Wang D., Zhu G., Huang X., and Lippard S.J. (2010) Proc. Natl. Acad. Sci. USA, 107, 9584–9589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Natile G., and Coluccia M. (2001) Coord. Chem. Rev., 217, 383–410. [Google Scholar]
- 28.Aris S.M., and Farrell N.P. (2009) Eur. J. Inorg. Chem., 2009, 1293–1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Coluccia M., Nassi A., Boccarelli A., Giordano D., Cardellicchio N., Locker D., Leng M., Sivo M., Intini F.P., and Natile G. (2009) J. Inorg. Biochem., 77, 31–35. [DOI] [PubMed] [Google Scholar]
- 30.Najajreh Y., Khazanov E., Jawbry S., Ardeli-Tzaraf X.-J., Perez J.M., Kasparkova J., Brabec V., Barenholz Y., and Gibson D. (2006) J. Med. Chem., 49, 4665–4673. [DOI] [PubMed] [Google Scholar]
- 31.Farrell N., Povirk L.F., Dange Y., DeMasters G., Gupta M.S., Kohlhagen et al. (2004) Biochem. Pharmacol., 68, 857–866. [DOI] [PubMed] [Google Scholar]
- 32.Zou Y., Houten V., and Farrell N.P. (1993) Biochemistry, 12, 9632–9638. [DOI] [PubMed] [Google Scholar]
- 33.Kratz F., Müller I.A., Ryppa C., and Warnecke A. (2008) ChemMedChem., 3, 20–53. [DOI] [PubMed] [Google Scholar]
- 34.Hall M.D., Foran G.J., Zhang M., Beale P.J., and Hambley T.W. (2003) J. Am. Chem. Soc., 125, 7524–7525. [DOI] [PubMed] [Google Scholar]
- 35.Hall M.D., and Hambley T.W. (2002) Coord. Chem. Rev., 232, 49–67. [Google Scholar]
- 36.Galanski M., Jakupec M.A., and Keppler B.K. (2005) Curr. Med. Chem., 12, 2075–2094. [DOI] [PubMed] [Google Scholar]
- 37.Figg W.D., Chau C.H., Madan R.A., Gulley J.L., Gao R., Sissung T.M., Spencer et al. (2013) Clin. Genitourinary, (in press). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Pizarro A.M., and Sadler P.J. (2009) Biochimie, 91, 1198–1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Yoon I., Li J.Z., and Shim Y.K. (2013) Clin. Endosc., 46, 7–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Castano A.P., Mroz P., and Hamblin M.R. (2006) Nat. Rev. Cancer, 6, 535–545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Josefsen L.B., and Boyle R.W. (2008) Met. Based Drugs, 2008, 1–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Skovsen E., Snyder J.W., Lambert J.D.C., and Ogilby P.R. (2005) J. Phys. Chem. B, 109, 8570–8573. [DOI] [PubMed] [Google Scholar]
- 43.Bown S.G. (2013) Phil. Trans. R. Soc. A, 371, 371:20120371. [DOI] [PubMed] [Google Scholar]
- 44.Farrer N.J., Salassa L., and Sadler P.J. (2009) Dalton Trans., 10690–10701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Szaciłowski K., Macyk W., Drzewiecka-Matuszek A., Brindell M., and Stochel G. (2005) Chem. Rev., 105, 2647–2694. [DOI] [PubMed] [Google Scholar]
- 46.Trushina O.I., Novikova E.G., Sokolov V.V., Filonenko E.V., Chissov V.I., and Vorozhtsov G.N. (2008) Photodiagnosis Photodyn. Ther., 5, 256–259. [DOI] [PubMed] [Google Scholar]
- 47.Patel H., Mick R., Finlay J., Zhu T.C., Rickter E., Keith A. et al. (2008) Clin. Cancer Res., 14, 4869–4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Grant W.E., Speight P.M., MacRobert A.J., Hopper C., and Bown S.G. (1994) Br. J. Cancer, 70, 72–78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Assembly N.P., Jin C.S., Lovell J.F., Chen J., and Zheng G. (2013) ACS Nano, 7, 2541–2550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Ali H., and van Lier J.E. (1999) Chem. Rev., 99, 2379–2450. [DOI] [PubMed] [Google Scholar]
- 51.Bonnett R. (2004) Metal complexes for photodynamic therapy, comprehensive coordination chemistry II. Elsevier Pergamon, Oxford. [Google Scholar]
- 52.Dougherty T.J., and Marcus S.L. (1992) Eur. J. Cancer, 28, 1734–1742. [DOI] [PubMed] [Google Scholar]
- 53.Q Light Phototherapy, http://www.qlight.ch/.
- 54.Bednarski P.J., Mackay F.S., and Sadler P.J. (2007) Anticancer Agents Med. Chem., 7, 75–93. [DOI] [PubMed] [Google Scholar]
- 55.Pawlicki M., Collins H.A., Denning R.G., and Anderson H.L. (2009) Angew. Chem. Int. Ed., 48, 3244–3266. [DOI] [PubMed] [Google Scholar]
- 56.Zhao Y., Roberts G.M., Greenough S.E., Farrer N.J., Paterson M.J., Powell et al. (2012) Angew. Chem. Int. Ed., 51, 11263–11266. [DOI] [PubMed] [Google Scholar]
- 57.Idris N.M., Gnanasammandhan M.K., Zhang J., Ho P.C., Mahendran R., and Zhang Y. (2012) Nat. Med., 18, 1580–1585. [DOI] [PubMed] [Google Scholar]
- 58.Wang C., Cheng L., and Liu Z. (2013) Theranostics, 3, 317–330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Balzani V., Bergamini G., Campagna S., and Puntoriero F. (2007) Top. Curr. Chem., 280, 1–36. [Google Scholar]
- 60.Wayne C.E., and Wayne R.P. (1996) Photochemistry. Oxford University Press, New York. [Google Scholar]
- 61.Atkins P.W., Overton T.L., Rourke J.P., Weller M.T., and Armstrong F.A. (2006) Inorganic chemistry. Oxford University Press, Oxford. [Google Scholar]
- 62.Housecroft C.E., and Sharpe A.G. (2005) Inorganic chemistry, 2nd edn. Pearson Education Limited, Harlow. [Google Scholar]
- 63.Sathyanarayana D.N. (2001) Electronic absorption spectroscopy and related techniques. University Press (India) Limited, Hyderabad. [Google Scholar]
- 64.Reusch W., http://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/photchem.htm, [accessed 29 July 2013].
- 65.Banerjee S., Prasad P., Hussain A., Khan I., Kondaiah P., and Chakravarty A.R. (2012) Chem. Commun., 48, 7702–7704. [DOI] [PubMed] [Google Scholar]
- 66.Basu U., Khan I., Hussain A., Kondaiah P., and Chakravarty A.R. (2012) Angew. Chem. Int. Ed., 51, 2658–2661. [DOI] [PubMed] [Google Scholar]
- 67.Schatzschneider U. (2010) Eur. J. Inorg. Chem., 1451–1467. [Google Scholar]
- 68.Liu Y., Hammitt R., Lutterman D.A., Joyce L.E., Thummel R.P., and Turro C. (2009) Inorg. Chem., 48, 375–385. [DOI] [PubMed] [Google Scholar]
- 69.Zayat L., Filevich O., Baraldo L.M., and Etchenique R. (2013) Phil. Trans. R. Soc. A, 371, 371:20120330. [DOI] [PubMed] [Google Scholar]
- 70.Betanzos-Lara S., Salassa L., Habtemariam A., and Sadler P.J. (2009) Chem. Commun., 6622–6624. [DOI] [PubMed] [Google Scholar]
- 71.Moucheron C. (2009) New J. Chem., 33, 235–245. [Google Scholar]
- 72.Rose M.J., and Mascharak P.K. (2008) Coord. Chem. Rev., 252, 2093–2114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Jackson B.A., Alekseyev V.Y., and Barton J.K. (1999) Biochemistry, 38, 4655–4662. [DOI] [PubMed] [Google Scholar]
- 74.Thomas S.W., Venkatesan K., Müller P., and Swager T.M. (2006) J. Am. Chem. Soc., 128, 16641–16648. [DOI] [PubMed] [Google Scholar]
- 75.To W.-P., Zou T., Sun R.W.-Y., and Che C.-M. (2013) Phil. Trans. R. Soc. A, 371, 371:20120126. [DOI] [PubMed] [Google Scholar]
- 76.Kalinowski J., Fattori V., Cocchi M., and Williams J.A.G. (2011) Coord. Chem. Rev., 255, 2401–2425. [Google Scholar]
- 77.Hissler M., McGarrah J.E., Connick W.B., Geiger D.K., Cummings S.D., and Eisenberg R. (2000) Coord. Chem. Rev., 208, 115–137. [Google Scholar]
- 78.Heringova P., Woods J., Mackay F.S., Kasparkova J., Sadler P.J., and Brabec V. (2006) J. Med. Chem., 49, 7792–7798. [DOI] [PubMed] [Google Scholar]
- 79.Mlcouskova J., Stepankova J., and Brabec V. (2012) J. Biol. Inorg. Chem., 17, 891–898. [DOI] [PubMed] [Google Scholar]
- 80.Lottner C., Bart K.-C., Bernhardt G., and Brunner H. (2002) J. Med. Chem., 45, 2064–2078. [DOI] [PubMed] [Google Scholar]
- 81.Ciesienski K.L., Hyman L.M., Yang D.T., Haas K.L., Dickens M.G., Holbrook R.J., and Franz K.J. (2010) Eur. J. Inorg. Chem., 2224–2228. [Google Scholar]
- 82.Lai S.-W., Liu Y., Zhang D., Wang B., Lok C.-N., Che C.-M., and Selke M., (2010) Photochem. Photobiol., 86, 1414–1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Wai-Yin Sun R., Lok-Fung Chow A., Li X.-H., Yan J.J., Sin-Yin Chui S., and Che C.-M. (2011) Chem. Sci., 2, 728–736. [Google Scholar]
- 84.Zou T., Lok C.-N., Fung Y.M.E., and Che C.-M. (2013) Chem. Commun., 49, 5423–5425. [DOI] [PubMed] [Google Scholar]
- 85.Donzello M.P., Vittori D., Viola E., Manet I., Mannina L., Cellai L. et al. (2011) Inorg. Chem., 50, 7391–7402. [DOI] [PubMed] [Google Scholar]
- 86.Higgins S.L.H., Tucker A.J., Winkel B.S.J., and Brewer K.J. (2012) Chem. Commun., 48, 67–69. [DOI] [PubMed] [Google Scholar]
- 87.Sciences N., Programmes P.G., Molnar K., Panning W., Andrews M., and Whyman R. (1986) Inorg. Chem., 2, 2910–2913. [Google Scholar]
- 88.Loup C., Tesouro Vallina A., Coppel Y., Létinois U., Nakabayashi Y., Meunier B. et al. (2010) Chem. Eur. J., 16, 11420–11431. [DOI] [PubMed] [Google Scholar]
- 89.Kratochwil N.A., and Bednarski P.J. (1999) Arch. Pharm., 332, 279–285. [DOI] [PubMed] [Google Scholar]
- 90.Kratochwil N.A., Zabel M., and Bednarski P.J. (1996) J. Med. Chem., 2, 2499–2507. [DOI] [PubMed] [Google Scholar]
- 91.Kratochwil N.A., Guo Z., del Socorro Murdoch P., Parkinson J.A., Bednarski P.J., and Sadler P.J. (1998) J. Am. Chem. Soc., 120, 8253–8254. [Google Scholar]
- 92.Vogler A., and Kern A. (1978) Angew. Chem. Int. Ed., 1157, 524–525. [Google Scholar]
- 93.Vogler A., Quett C., and Kunkely H. (1988) Ber. Bunsenges. Phys. Chem., 92, 1486–1492. [Google Scholar]
- 94.Mackay F.S., Woods J.A., Heringová P., Kaspárková J., Pizarro A.M., Moggach S.A. et al. (2007) Proc. Natl. Acad. Sci. USA, 104, 20743–20748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Farrer N.J., Woods J.A., Salassa L., Zhao Y., Robinson K.S., Clarkson G. et al. (2010) Angew. Chem. Int. Ed., 49, 8905–8908. [DOI] [PubMed] [Google Scholar]
- 96.Mackay F.S., Woods J.A., Moseley H., Ferguson J., Dawson A., Parsons S., and Sadler P.J. (2006) Chem. Eur. J., 12, 3155–3161. [DOI] [PubMed] [Google Scholar]
- 97.Muller P., Schroder B., Parkinson J.A., Kratochwil N.A., Coxall R.A., Parkin et al. (2003) Angew. Chem. Int. Ed., 42, 335–339. [DOI] [PubMed] [Google Scholar]
- 98.Phillips H.I.A., Ronconi L., and Sadler P.J. (2009) Chem. Eur. J., 15, 1588–1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Ronconi L., and Sadler P.J. (2011) Dalton Trans., 40, 262–268. [DOI] [PubMed] [Google Scholar]
- 100.Ronconi L., and Sadler P.J. (2008) Chem. Commun., 235–237. [DOI] [PubMed] [Google Scholar]
- 101.Bednarski P.J., Grünert R., Zielzki M., Wellner A., Mackay F.S., and Sadler P.J. (2006) Chem. Biol., 13, 61–67. [DOI] [PubMed] [Google Scholar]
- 102.Bednarski P.J., Korpis K., Westendorf A.F., Perfahl S., and Grünert R. (2013) Phil. Trans. R. Soc. A, 371, 371:20120118. [DOI] [PubMed] [Google Scholar]
- 103.Westendorf A.F., Woods J.A., Korpis K., Farrer N.J., Salassa L., Robinson K. et al. (2012) Mol. Cancer Ther., 11, 1894–1904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Farrer N.J., Woods J.A., Munk V.P., Mackay F.S., and Sadler P.J. (2010) Chem. Res. Toxicol., 23, 413–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Butler J.S., Woods J.A., Farrer N.J., Newton M.E., and Sadler P.J. (2012) J. Am. Chem. Soc., 134, 16508–16511. [DOI] [PubMed] [Google Scholar]
- 106.Harriman A. (1987) J. Phys. Chem., 91, 6102–6104. [Google Scholar]
- 107.Pracharova J., Zerzankova L., Stepankova J., Novakova O., Farrer N.J., Sadler et al. (2012) Chem. Res. Toxicol., 25, 1099–111. [DOI] [PubMed] [Google Scholar]
- 108.Westendorf A.F., Bodtke A., and Bednarski P.J. (2011) Dalton Trans., 40, 5342–5451. [DOI] [PubMed] [Google Scholar]