Abstract
Endolysins (lysins) are bacteriophage-encoded enzymes that have evolved to degrade specific bonds within the bacterial cell wall. These enzymes represent a novel class of antibacterial agents against infectious pathogens, especially in light of multidrug-resistant bacteria, which have made antibiotic therapy increasingly redundant. Lysins have been used successfully to eliminate/control bacterial pathogens in various anatomical locations in mouse and other animal models. Engineering tactics have also been successfully applied to improve lysin function. This review discusses the structure and function of lysins. It highlights protein-engineering tactics utilised to improve lysin activity. It also reviews the applications of lysins towards food biopreservation, therapeutics, bioifilm elimination and diagnostics.
Keywords: antibacterial, bacteriophage, detection, endolysin, lysis, protein engineering
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
7. References
- 1.Wittebole X., De Roock S., and Opal S.M. (2014) Virulence, 5, 226–235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Nelson D., Loomis L., and Fischetti V.A. (2001) Proc. Natl Acad. Sci. USA, 98, 4107–4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Fischetti V.A. (2008) Curr. Opin. Microbiol., 11, 393–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Sao-Jose C., Parreira R., Vieira G., and Santos M.A. (2000) J. Bacteriol., 182, 5823–5831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Young R., Wang I.N., and Roof W.D. (2000) Trends Microbiol., 8, 120–128. [DOI] [PubMed] [Google Scholar]
- 6.Zheng Y., Struck D.K., and Young R. (2009) Biochemistry, 48, 4999–5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Oliveira H., Thiagarajan V., Walmagh M. et al. (2014) PLoS One, 9, e108376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Schmelcher M., Shabarova T., Eugster M.R. et al. (2010) Appl. Environ. Microb., 76, 5745–5756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Yoong P., Schuch R., Nelson D., and Fischetti V.A. (2004) J. Bacteriol., 186, 4808–4812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Loeffler J.M., Nelson D., and Fischetti V.A. (2001) Science, 294, 2170–2172. [DOI] [PubMed] [Google Scholar]
- 11.Rodríguez-Rubio L., Martínez B., Rodríguez A. et al. (2013) PLoS One, 8, 1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Schuch R., Nelson D., and Fischetti V.A. (2002) Nature, 418, 884–889. [DOI] [PubMed] [Google Scholar]
- 13.O'Flaherty S., Coffey A., Meaney W. et al. (2005) J. Bacteriol., 187, 7161–7164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Gaeng S., Scherer S., Neve H., and Loessner M.J. (2000) Appl. Environ. Microb., 66, 2951–2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Mayer M.J., Narbad A., and Gasson M.J. (2008) J. Bacteriol., 190, 6734–6740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Walmagh M., Briers Y., Dos Santos S.B. et al. (2012) PLoS One, 7, e36991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Nikaido H. (2003) Microbiol. Mol. Biol. R., 67, 593–656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Legotsky S.A., Vlasova K.Y., Priyma A.D. et al. (2014) Biochimie, 107, 293–299. [DOI] [PubMed] [Google Scholar]
- 19.Briers Y., Walmagh M., Grymonprez B. et al. (2014) Antimicrob. Agents Ch., 58, 3774–3784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Pohane A.A., Patidar N.D., and Jain V. (2015) FEBS Lett., 589, 695–701. [DOI] [PubMed] [Google Scholar]
- 21.Proença D., Fernandes S., Leandro C. et al. (2012) Microb. Drug Resist., 18, 322–32. [DOI] [PubMed] [Google Scholar]
- 22.Tišáková L., Vidová B., Farkašovská J., and Godány A. (2014) FEMS Microb. Lett., 350, 199–208. [DOI] [PubMed] [Google Scholar]
- 23.Dunne M., Mertens H.D., Garefalaki V. et al. (2014) PLoS Pathogens, 10, e1004228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Mayer M.J., Payne J., Gasson M.J., and Narbad A. (2010) Appl. Environ. Microb., 76, 5415–5422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Eugster M.R., and Loessner M.J. (2012) J. Bacteriol., 194, 6498–6506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Hermoso J.A., Monterroso B., Albert A. et al. (2003) Structure, 11, 1239–1249. [DOI] [PubMed] [Google Scholar]
- 27.Lood R., Raz A., Molina H. et al. (2014) Antimicrob. Agents Ch., 58, 3073–3084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Regulski K., Courtin P., Kulakauskas S., and Chapot-Chartier M.P. (2013) J. Biol. Chem., 288, 20416–20426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Plotka M., Kaczorowska A.K., Stefanska A. et al. (2014) Appl. Environ. Microb., 80, 886–895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Kikkawa H.S., Ueda T., Suzuki S., and Yasuda J. (2008) FEMS Microb. Lett., 286, 236–240. [DOI] [PubMed] [Google Scholar]
- 31.Korndörfer I.P., Danzer J., Schmelcher M. et al. (2006) J. Mol. Biol., 364, 678–689. [DOI] [PubMed] [Google Scholar]
- 32.Schmelcher M., Donovan D.M., and Loessner M.J. (2012) Future Microbiol., 7, 1147–1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Vasala A., Välkkilä M., Caldentey J., and Alatossava T. (1995) Appl. Environ. Microb., 61, 4004–4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Donovan D.M., Lardeo M., and Foster-Frey J. (2006) FEMS Microb. Lett., 265, 133–139. [DOI] [PubMed] [Google Scholar]
- 35.Bateman A., and Rawlings N.D. (2003) Trends Biochem. Sci., 28, 234–237. [DOI] [PubMed] [Google Scholar]
- 36.Rigden D.J., Jedrzejas M.J., and Galperin M.Y. (2003) Trends Biochem. Sci., 28, 230–234. [DOI] [PubMed] [Google Scholar]
- 37.Payne K.M., and Hatfull G.F. (2012) PLoS One, 7, e34052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Horgan M., O'Flynn G., Garry J. et al. (2009) Appl. Environ. Microb., 75, 872–874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Huang G., Shen X., Gong Y. et al. (2014) BMC Infect. Dis., 14, 681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Jun S.Y., Jung G., Yoon S. et al. (2013) SAL-1. Int. J. Antimicrob. Ag., 41, 156–161. [DOI] [PubMed] [Google Scholar]
- 41.Diez-Martinez R., De Paz H.D., Garcia-Fernandez E. et al. (2015) J. Antimicrob. Chemoth., 70, 1763–1773. [DOI] [PubMed] [Google Scholar]
- 42.Gutiérrez D., Ruas-Madiedo P., Martínez B. et al. (2014) PLoS One, 9, e107307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Sass P., and Bierbaum G. (2007) Appl. Environ. Microb., 73, 347–352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Son B., Yun J., Lim J. et al. (2012) BMC Microbiol., 12, 33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Lim J., Shin H., Heu S., and Ryu S. (2014) J. Mol. Microb. Biotech., 24, 803–811. [DOI] [PubMed] [Google Scholar]
- 46.Abaev I., Foster-Frey J., Korobova O. et al. (2013) Appl. Microbiol. Biot., 97, 3449–3456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Lim J.A., Shin H., Kang D.H., and Ryu S. (2012) Res. Microbiol., 163, 233–241. [DOI] [PubMed] [Google Scholar]
- 48.Jun S.Y., Jung G., Son J. et al. (2011) Antimicrob. Agents Ch., 55, 1764–1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Sanz-Gaitero M., Keary R., Garcia-Doval C. et al. (2013) Acta Crystallogr. Sect. F, 69, 1393–1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Lai M.J., Lin N.T., Hu A. et al. (2011) Appl. Microbiol. Biot., 90, 529–539. [DOI] [PubMed] [Google Scholar]
- 51.Jado I., López R., García E. et al. (2003) J. Antimicrob. Chemoth., 52, 967–973. [DOI] [PubMed] [Google Scholar]
- 52.Loeffler J.M., and Fischetti V.A. (2003) Antimicrob. Agents Ch., 47, 375–377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.García P., Martínez B., Rodríguez L., and Rodríguez A. (2010) Int. J. Food Microbiol., 141, 151–155. [DOI] [PubMed] [Google Scholar]
- 54.Becker S.C., Foster-Frey J., and Donovan D.M. (2008) FEMS Microbiol. Lett., 287, 185–191. [DOI] [PubMed] [Google Scholar]
- 55.Rashel M., Uchiyama J., Ujihara T. et al. (2007) J. infect. Dis., 196, 1237–1247. [DOI] [PubMed] [Google Scholar]
- 56.Rodríguez-Cerrato V., García P., del Prado G. et al. (2007) J. Antimicrob. Chemoth., 60, 1159–1162. [DOI] [PubMed] [Google Scholar]
- 57.Linden S.B., Zhang H., Heselpoth R.D. et al. (2015) Appl. Microbiol. Biot., 99, 741–752. [DOI] [PubMed] [Google Scholar]
- 58.Cullen L., and McClean S. (2015) Pathogens, 4, 66–89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Martins A., Hunyadi A., and Amaral L. (2013) Open Microbiol. J., 7, 53–58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Young R. (1992) Microbiol. Rev., 56, 430–481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Young R. (2002) J. Mol. Microb. Biotech., 4, 21–36. [PubMed] [Google Scholar]
- 62.Bläsi U., Nam K., Hartz D. et al. (1989) EMBO Journal, 8, 3501–3510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Bläsi U., Fraisl P., Chang C.Y. et al. (1999) J. Bacteriol., 181, 2922–2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Smith D.L., Struck D.K., Scholtz J.M., and Young R. (1998) J. Bacteriol., 180, 2531–2540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Grundling A., Smith D.L., Blasi U., and Young R. (2000) J. Bacteriol., 182, 6075–6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.White R., Chiba S., Pang T. et al. (2011) Proc. Natl. Sci. USA, 108, 798–803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Kakikawa M., Yokoi K., Kimoto H. et al. (2002) Gene, 299, 227–234. [DOI] [PubMed] [Google Scholar]
- 68.Guo T., Zhang C., Liu W. et al. (2015) Int. J. Food Microbiol., 203, 1–7. [DOI] [PubMed] [Google Scholar]
- 69.Summer E.J., Berry J., Tran T.A.T. et al. (2007) J. Mol. Biol., 373, 1098–1112. [DOI] [PubMed] [Google Scholar]
- 70.Berry J., Savva C., Holzenburg A., and Young R. (2010) Protein Sci., 19, 1967–1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Berry J., Rajaure M., Pang T., and Young R. (2012) J. Bacteriol., 194, 5667–5674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Díez-Martínez R., De Paz H., Bustamante N. et al. (2013) Antimicrob. Agents Ch., 57, 5355–5365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Mayer M.J., Gasson M.J., and Narbad A. (2012) Appl. Environ. Microb., 78, 3685–3692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Schmelcher M., Powell A.M., Becker S.C. et al. (2012) Appl. Environ. Microb., 78, 2297–2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Swift S., Seal B., Garrish J. et al. (2015) Viruses, 7, 3019–3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Fernandes S., Proença D., Cantante C. et al. (2012) Microbial. Drug Resistance, 18, 333–343. [DOI] [PubMed] [Google Scholar]
- 77.Schmelcher M., Tchang V.S., and Loessner M.J. (2011) Microb. Biotechnol., 4, 651–662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Low L.Y., Yang C., Perego M. et al. (2011) J. Biol. Chem., 286, 34391–34403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Oyston P.C.F., Fox M.A., Richards S.J., and Clark G.C. (2009) J. Med. Microbiol., 58, 977–987. [DOI] [PubMed] [Google Scholar]
- 80.Auclair S.M., Bhanu M.K., and Kendall D.A. (2012) Protein Sci., 21, 13–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Turner M.S., Waldherr F., Loessner M.J., and Giffard P.M. (2007) Syst. Appl. Microbiol., 30, 58–67. [DOI] [PubMed] [Google Scholar]
- 82.Gervasi T., Horn N., Wegmann U. et al. (2014) Appl. Microbiol. Biot., 98, 2495–2505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Rodríguez-Rubio L., Gutiérrez D., Martínez B. et al. (2012) Appl. Environ. Microb., 78, 3469–3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Zhang H., Bao H., Billington C. et al. (2012) Food Microbiol., 31, 133–136. [DOI] [PubMed] [Google Scholar]
- 85.Obeso J.M., Martínez B., Rodríguez A., and García P. (2008) Int. J. Food Microbiol., 128, 212–218. [DOI] [PubMed] [Google Scholar]
- 86.Solanki K., Grover N., Downs P. et al. (2013) Sci. Rep., 3, 1–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Daniel A., Euler C., Collin M. et al. (2010) Antimicrob. Agents Ch., 54, 1603–1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Fenton M., Casey P.G., Hill C. et al. (2010) Bioeng. Bugs, 1, 404–407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Singh P.K., Donovan D.M., and Kumar A. (2014) Antimicrob. Agents Ch., 58, 4621–4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Zhang W., Mi Z., Yin X. et al. (2013) PLoS One, 8, e80435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Pastagia M., Euler C., Chahales P. et al. (2011) Antimicrob. Agents Ch., 55, 738–744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Doehn J.M., Fischer K., Reppe K. et al. (2013) J. Antimicrob. Chemoth., 68, 2111–2117. [DOI] [PubMed] [Google Scholar]
- 93.Jun S.Y., Jung G., Yoon S. et al. (2014) Antimicrob. Agents Ch., 58, 2084–2088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Otto M. (2008) Curr. Top. Microbiol., 322, 207–228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Sanchez-Vizuete P., Orgaz B., Aymerich S. et al. (2015) Front. Microbiol., 6, 1–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Son J.S., Lee S.J., Jun S.Y. et al. (2010) Appl. Microbiol. Biot., 86, 1439–1449. [DOI] [PubMed] [Google Scholar]
- 97.Fenton M., Keary R., McAuliffe O. et al. (2013) Int. J. Microbiol., 2013, 1–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Kretzer J.W., Lehmann R., Schmelcher M. et al. (2007) Appl. Environ. Microb., 73, 1992–2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Gerova M., Halgasova N., Ugorcakova J., and Bukovska G. (2011) FEMS Microbiol. Lett., 321, 83–91. [DOI] [PubMed] [Google Scholar]
- 100.Kong M., Sim J., Kang T. et al. (2015) Eur. Biophys. J., 44, 437–446. [DOI] [PubMed] [Google Scholar]
- 101.Walcher G., Stessl B., Wagner M. et al. (2010) Foodborne Pathog. Dis., 7, 1019–1024. [DOI] [PubMed] [Google Scholar]
- 102.Hoopes J.T., Stark, Caren J., Kim H. et al. (2009) Appl. Environ. Microb., 75, 1388–1394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Roach D.R., Khatibi P.A., Bischoff K.M. et al. (2013) Biotechnol. Biofuels, 6, 20. [DOI] [PMC free article] [PubMed] [Google Scholar]