Abstract
This review discusses current development in biosensors for the detection of biological warfare agents (BWAs). BWAs include bacteria, virus and toxins that are added deliberately into air, water and food to spread terrorism and cause disease or death. The rapid and unambiguous detection and identification of BWAs with early warning signals for detecting possible biological attack is a major challenge for government agencies particularly military and health. The detection devices – biosensors – can be classified (according to their physicochemical transducers) into four types:. electrochemical, nucleic acid, optical and piezoelectric. Advantages and limitations of biosensors are discussed in this review followed by an assessment of the current state of development of different types of biosensors. The research and development in biosensors for biological warfare agent detection is of great interest for the public as well as for governments.
Keywords: biological warfare agents, biosensors, electrochemical biosensors, piezoelectric sensors, optical biosensors
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
References
- 1.Allain C.C., Poon L.S., Chan C.G.W., and Richmond P.C.F. (1974) Clin. Chem., 20, 470–475. [PubMed] [Google Scholar]
- 2.Witte D.L., Barrett D.A., and Wycoff D.A. (1974) Clin. Chem., 20, 1282–1286. [PubMed] [Google Scholar]
- 3.Karube I., Hera K., Matsuoka H., and Suzuki S. (1982) Anal. Chim. Acta, 139, 127–132. [Google Scholar]
- 4.Veldhoven V., Meyhi P.P., and Mannaerts G.P. (1998) Anal. Biochem., 258, 152–155. [DOI] [PubMed] [Google Scholar]
- 5.Shahnaz B., Tada S., Kajikawa T., Ishida T., and Kawanishi K. (1998) Ann. Clin. Biochem., 345, 665–670. [DOI] [PubMed] [Google Scholar]
- 6.Kennedy J.F. (1975) In: Wiseman A. (ed.), Handbook of enzyme biotechnology, Chap. 4. John Wiley and Sons, New York. [Google Scholar]
- 7.Tabata M., Endo J., and Murachi T. (1981) J. Appl. Biochem., 3, 84–92. [Google Scholar]
- 8.Pundir C.S., and Suman (2003) Curr. Appl. Phys., 3, 129–133. [Google Scholar]
- 9.Braco L., Daros J.A., and Guardia M. (1992) Anal. Chem., 64, 129–133. [Google Scholar]
- 10.Singh S., Solanki P.R., and Malhotra B.D. (2005) Anal. Chim. Acta, 568, 126–132. [DOI] [PubMed] [Google Scholar]
- 11.Kennedy J.F. (1985) In: Weetall H.H. (ed.), Handbook of enzyme technology, John Wiley and Sons, New York. [Google Scholar]
- 12.Farrar W.E. (1995) Pharos, 58, 35–38. [PubMed] [Google Scholar]
- 13.Walker H.D., Yampolska O., and Grinberg L.M. (1994) Am. J. Pathol., 144, 1135–1141. [PMC free article] [PubMed] [Google Scholar]
- 14.John T.J. (1996) Ind. J. Med. Res., 103, 4–18. [PubMed] [Google Scholar]
- 15.Titball R.W., Turnbull P.C.B., and Hutson R.A. (1991) J. Appl. Bacteriol. Symp., 70, 9s–18s. [PubMed] [Google Scholar]
- 16.Lin H.J., Charles P.T., Andreadis J.D., Churilla A.M., Stenger D.A., and Pancrazio J.J. (2002) Anal. Chim. Acta, 457, 97–108. [Google Scholar]
- 17.Emanuel P.A., Bell R.J., Dang L., McClanahan R., David J.C., Burgess R.J., Thompson J., Collins L., and Hadfield T. (2003) J. Clin. Microbiol., 41, 689–693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Liu W., Montana V., Chapman E.R., Mohideen U., and Parpura V. (2003) Proc. Natl. Acad. Sci. USA, 100, 13621–13625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Robinson-Dunn B. (2002) Arch. Path. Lab. Med., 126, 291–294. [DOI] [PubMed] [Google Scholar]
- 20.Berman J.G., and Henderson D.A. (1998) N. Engl. J. Med., 339, 556–559. [DOI] [PubMed] [Google Scholar]
- 21.Steyn P.S. (1995) Toxicol. Lett., 82/83, 843–851. [DOI] [PubMed] [Google Scholar]
- 22.Wannemacher R.W. Jr., and Wiener S.L. (1997) In: Sidell F.R., Takafuji E.T., and Franz D.R. (eds), Medical aspects of chemical and biological warfare, office of the surgeon general, pp. 655–676. United States Army, VA. [Google Scholar]
- 23.Lee W.E., Thomson H.G., Hall J.G., Fulton R.E., and Wong J.P. (1993) Characteristics of the biochemical detector sensor, Defence Research Establishment Suffield, Canada. Suffield Memorandum No. 1402, 1–23 [Google Scholar]
- 24.Ercole C., Del Gallo M., Pantalone M., Santucci S., Mosiello L., Laconi C., and Lepidi A. (2002) Sens. Actuat. B, 4163, 1–5. [Google Scholar]
- 25.Ghindilis A.L., Atanasov P., Wilkins P., and Wilkins E. (1998) Biosens. Bioelectron., 13, 113–131. [DOI] [PubMed] [Google Scholar]
- 26.Mirhabibollahi B., Brooks J.L., and Kroll R.G. (1990) Appl. Microbiol. Biotechnol., 34, 242–247. [DOI] [PubMed] [Google Scholar]
- 27.Brooks J.L., Mirhabibollahi B., and Kroll R.G. (1990) Appl. Environ. Microbiol., 56, 3278–3284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Nakamura N., Shigematsu A., and Matsunaga T. (1991) Biosens. Bioelectron., 6, 575–580. [DOI] [PubMed] [Google Scholar]
- 29.Brook J.L., Mirhabibollahi B., and Kroll R.G. (1992) J. Appl. Bacteriology, 73, 189–196. [DOI] [PubMed] [Google Scholar]
- 30.Kim H.J., Bennetto H.P., and Haqlablab M.A. (1995) Biotechnol. Technol., 9, 389–394. [Google Scholar]
- 31.Gau J., Lan E.H., Dunn B., Ho C., and Woo J.C.S. (2001) Biosens. Bioelectron., 16, 745–755. [DOI] [PubMed] [Google Scholar]
- 32.Brewster J.D., Gehring A.G., Mazenko R.S., Vanhouten L.J., and Crawford C.J. (1996) Anal. Chem., 68, 4153–4159. [DOI] [PubMed] [Google Scholar]
- 33.Gehring A.G., Crawford C.G., Mazenko R.S., Van Houten L.J., and Brewster J.D. (1996) J. Immunol. Meth., 195, 15–25. [DOI] [PubMed] [Google Scholar]
- 34.Perez F.G., Mascini M., Tothill I.E., and Turner A.P.F. (1998) Anal. Chem., 70, 2380–2386. [DOI] [PubMed] [Google Scholar]
- 35.Brewster J.D., and Mazenko R.S. (1998) J. Immunol. Meth., 211, 1–8. [DOI] [PubMed] [Google Scholar]
- 36.Che Y., Li Y., and Slavik M. (2001) Biosens. Bioelectron., 16, 791–797. [DOI] [PubMed] [Google Scholar]
- 37.Yao T., Sato M., Kobayashi Y., and Wasa T. (1985) Anal. Biochem., 149, 387–391. [DOI] [PubMed] [Google Scholar]
- 38.Moody G.J., Sanghera G.S., and Thomas J.D.R. (1988) Analyst, 113, 1419–1423. [DOI] [PubMed] [Google Scholar]
- 39.Wolfgang T., Lionti I., Marco, and Mascini, (1993) Electroanalysis, 5, 753–763. [Google Scholar]
- 40.Gilmartin M.A.T., and Hart J.P. (1994) Analyst, 119, 2331–2336. [DOI] [PubMed] [Google Scholar]
- 41.Solanki P.R., Arya S.K., Nishimura Y., Iwamoto M., and Malhotra B.D. (2007) Langmuir, 23, 7398–7403. [DOI] [PubMed] [Google Scholar]
- 42.Charpentier L., and Murr N. (1995) Anal. Chim. Acta, 318, 89–93. [Google Scholar]
- 43.Sean B., Dyer N.S., and Anthony G. (2001) Anal. Chim. Acta, 448, 27–36. [Google Scholar]
- 44.Nuria P., Gloria Ruiz, Julio, Reviejo A., Jose M., and Pingarron (2001) Anal. Chem., 5, 1190–1195. [Google Scholar]
- 45.Vidal J.C., Garcia E., and Castillo J.R. (2002) Anal. Sci., 18, 537–542. [DOI] [PubMed] [Google Scholar]
- 46.Vidal J.C., Espuelas J., Garica-Ruiz E., and Castillo J.R. (2004) Talanta, 64, 655–664. [DOI] [PubMed] [Google Scholar]
- 47.Vidal J.C., Espuelas J., and Castillo J.R. (2004) Anal. Biochem., 333, 88–98. [DOI] [PubMed] [Google Scholar]
- 48.Jianping L., and Peng Y. (2003) Electroanalysis, 15, 1031–1033. [Google Scholar]
- 49.Endo H., Masashi M., Mio T., Huifeng R., Tetushito H., Naoto U., and Kohji M. (2003) Science, 106, 1194–1199. [Google Scholar]
- 50.Singh S., Chaubey A., and Malhotra B.D. (2004) Anal. Chim. Acta, 502, 229–234. [Google Scholar]
- 51.Tan X., Li M., Cai P., Luo L., and Zou X. (2004) Anal. Biochem., 337, 111–120. [DOI] [PubMed] [Google Scholar]
- 52.Simonian A.L., Good T.A., Wang S.S., Wild J.R. (2005) Anal. Chim. Acta, 534, 69–77. [Google Scholar]
- 53.Song M.J., Yun D.H., Jin J.H., Min N.K., and In Hong S. (2006) Jpn. J. Appl. Phys., 45, 7197–7202. [Google Scholar]
- 54.Vikas, and Pundir C.S. (2008) J. Sci. Ind. Res., 67, 299–306. [Google Scholar]
- 55.Adhikari B., and Majumdar S. (2004) Prog. Polym. Sci., 29, 699–766. [Google Scholar]
- 56.Oesch U., Ammann D., and Simon W. (1986) Clin. Chem., 32, 1448–1459. [PubMed] [Google Scholar]
- 57.Benco J.S., Nienaber H.A., and McGimpsey W.G. (2003) Anal. Chem., 75, 152–156. [DOI] [PubMed] [Google Scholar]
- 58.Rucka M., and Turkiewicz B. (1989) Appl. Biochem. Biotechnol., 22, 119–127. [DOI] [PubMed] [Google Scholar]
- 59.Shaw J.F., Chang R.C., Wang F.F., and Wang Y.J. (1989) Biotechnol. Bioeng., 35, 132–137. [DOI] [PubMed] [Google Scholar]
- 60.Karakus E., Pekyardimci S., and Esma K. (2005) Immobil. Biotechnol., 33, 329–341. [DOI] [PubMed] [Google Scholar]
- 61.Tinkilic N., Cubuk O., and Isildak I. (2002) Anal. Chim. Acta, 452, 29–34. [Google Scholar]
- 62.Goldstein G. (1976) J. Chromatogr., 129, 61–72. [DOI] [PubMed] [Google Scholar]
- 63.Guibault G.G. (1984) In: Dekker M. (ed.), Analytical uses of immobilised enzymes, Wiley, New York. [Google Scholar]
- 64.Sukeerthi S., and Contractor A.Q. (1994) Ind. J. Chem., 33A, 565–571. [Google Scholar]
- 65.Gerard M., Chaubey A., and Malhotra B.D. (2002) Biosens. Bioelectron., 17, 345–359. [DOI] [PubMed] [Google Scholar]
- 66.Cullen D.C., Sethi R.S., and Lowe C.R. (1990) Anal. Chim. Acta, 231, 33–40. [Google Scholar]
- 67.Silley P., and Forsythe S. (1996) J. Appl. Bacteriol., 80, 233–243. [DOI] [PubMed] [Google Scholar]
- 68.Milner K.R., Brown A.P., Allsopp D.W.E., and Betts W.B. (1998) Electron. Lett., 34, 66–68. [Google Scholar]
- 69.Desilva M.S., Zhang Y., Hesketh P.J., Maclay G.J., Gendel S.M., and Steller J.R. (1995) Biosens. Bioelectron., 10, 669–682. [DOI] [PubMed] [Google Scholar]
- 70.Sergeyeva T.A., Lavrik N.V., Rachkov A.E., Kazantseva Z.I., and EI Skaya A.V. (1998) Biosens. Bioelectron., 13, 359–369. [DOI] [PubMed] [Google Scholar]
- 71.Ehret R., Baumann W., Brischwein M., Schwinde A., Stegbauer K., and Wolf B. (1997) Biosens. Bioelectron., 12, 29–41. [DOI] [PubMed] [Google Scholar]
- 72.Pless P., Futschik K., and Schopf E. (1994) J. Food Protect., 57, 369–376. [DOI] [PubMed] [Google Scholar]
- 73.Higgins J.A., Ibrahim M.S., Knauert F.K., Ludwig G.V., Kijek T.M., Ezzell J.W., Courtney B.C., and Henchal E.A. (1994) Ann. N. Y. Acad. Sci., 894, 130–148. [DOI] [PubMed] [Google Scholar]
- 74.Hartley H.A., and Baeumner A.J. (2003) Anal. Bioanal. Chem., 376, 319–327. [DOI] [PubMed] [Google Scholar]
- 75.Versage J.L., Severin D.D.M., Chu M.C., and Petersen J.M. (2003) J. Clin. Microbiol., 41, 5492–5499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Ibrahim M.S., Lofts R.S., Jahrling P.B., Henchal E.A., Weedn V.W., Northrup M.A., and Belgrader P. (1998) Anal. Chem., 70, 2013–2017. [DOI] [PubMed] [Google Scholar]
- 77.Belgrader P., Elkin C.J., Brown S.B., Nasarabadi S.N., Langlois R.G., Milanovich F.P., Colston B.W., and Marshall G.D. (2003) Anal. Chem., 75, 3446–3450. [DOI] [PubMed] [Google Scholar]
- 78.Emanuel P.A., Bell R., Dang J.L., McClanahan R., David J.C., Burgess R.J., Thompson J., Collins L., and Hadfield T. (2003) J. Clin. Microbiol., 41, 689–693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Panning M., Asper M., Kramme S., Schmitz H., and Drosten C. (2004) Clin. Chem., 50, 702–708. [DOI] [PubMed] [Google Scholar]
- 80.Laassri M., Chizhikov V., Mikheev M., Shchelkunov S., and Chumakov K. (2003) J. Virol. Meth., 112, 67–78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Higgins J.A., Nasarabadi S., Karns J.S., Shelton D.R., Cooper M., Gbakima A., and Koopman R.P. (2003) Biosens. Bioelectron., 18, 1115–1123. [DOI] [PubMed] [Google Scholar]
- 82.Lin H.J., Charles P.T., Andreadis J.D., Churilla A.M., Stenger D.A., and Pancrazio J.J. (2002) Anal. Chim. Acta, 457, 97–108. [Google Scholar]
- 83.Baeumner A.J., Leonard B., McElwee J., and Montagna R.A. (2004) Anal. Bioanal. Chem., 380, 15–23. [DOI] [PubMed] [Google Scholar]
- 84.Glazier S.A., and Weetall H.H. (1994) J. Microbiol. Meth., 20, 23–27. [Google Scholar]
- 85.Tims T.B., and Lim D.V. (2004) J. Microbiol. Meth., 59, 127–30. [DOI] [PubMed] [Google Scholar]
- 86.Bringham-Burke M., Edwards J.R., and O'Shannessy D.J. (1992) J. Anal. Biochem., 205, 125–131. [DOI] [PubMed] [Google Scholar]
- 87.Hsieh H.V., Stewart B., Hauer P., Haaland P., and Campbell R. (1998) Vaccine, 16, 997–1003. [DOI] [PubMed] [Google Scholar]
- 88.Oh B.K., Lee W., Chun B.S., Bae Y.M., Lee W.H., and Choi J.W. (2005) Biosens. Bioelectron., 20, 1847–1850. [DOI] [PubMed] [Google Scholar]
- 89.Watts H.J., Lowe C.R., and Pollard-Knight D.V. (1994) Anal. Chem., 66, 2465–2470. [DOI] [PubMed] [Google Scholar]
- 90.Schneider B.H., Edwards J.G., and Hartman N.F. (1997) Clin. Chem., 43, 1757–1763. [PubMed] [Google Scholar]
- 91.Cao K.L., Anderson G.P., Ligler F.S., and Ezzel J. (1995) J. Clin. Microbiol., 33, 336–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Wijesuriya D.C., Anderson G.P., and Ligler F.S. (1994), In: Berg D.A., and Williams J.D., Reeves J., and Reeves P.J. (eds), Proc. 1993 ERDEC Scientific Conference on Chemical Defence Research, pp. 671–677. Report No. ERDEC-SP-024 16–19 November 1993, Maryland. [Google Scholar]
- 93.Carlson M.A., Bargeron C.B., Benson R.C., Fraser A.B., Phillips T.E., Velky J.T., Groopman J.D., Strickland P.T., and Ko H.W. (2000) Biosens. Bioelectron., 14, 841–848. [DOI] [PubMed] [Google Scholar]
- 94.Kwakye S., and Baumner A. (2003) Anal. Bioanal. Chem., 376, 1062–1068. [DOI] [PubMed] [Google Scholar]
- 95.Koch S., Wolf H., Danapel C., and Feller K.A. (2000) Biosens. Bioelectron., 14, 779–784. [DOI] [PubMed] [Google Scholar]
- 96.Prusak-Sochaczewski E., Luong J.H.T., and Guilbault G.G. (1990) Enzyme Microbiol. Technol., 12, 173–177. [DOI] [PubMed] [Google Scholar]
- 97.Plomer M., Guilbault G.G., and Hock B. (1992) Enzyme Microb. Technol., 14, 230–235. [DOI] [PubMed] [Google Scholar]
- 98.Carter R.M., Mekalanos J.J., Jacobs M.B., Lubrano G.J., and Guilbault G.G. (1995) J. Immunol. Meth., 187, 121–125. [DOI] [PubMed] [Google Scholar]
- 99.Wong Y.Y., Ng S.P., Ng M.H., Si S.H., Yao S.Z., and Fung Y.S. (2002) Biosens. Bioelectron., 17, 676–84. [DOI] [PubMed] [Google Scholar]
- 100.Zuo B., Li S., Guo Z., Zhang J., and Chen C. (2004) Anal. Chem., 76, 3536–3540. [DOI] [PubMed] [Google Scholar]
- 101.Pohanka M., and Skládal P. (2005) Analyt. Lett., 38, 411–422. [Google Scholar]
- 102.Edelstein R.L., Tamanaha C.R., Sheehan P.E., Miller M.M., Baselt D.R., Whitman L.J., and Colton R.J. (2000) Biosens. Bioelectron., 14, 805–813. [DOI] [PubMed] [Google Scholar]
- 103.Viveros L., Paliwal S., McCrae D., Wild J., and Simonian A. (2006) Sensors Actuators B: Chem., 115(1). [Google Scholar]
- 104.Nicolos J.L. (2010) Improving the stability of an oxime based electrochemical microsensor for organophosphate vapor detection, PhD thesis, Graduate College of the University of Illinois; at Urbana-Champaign: (2010). [Google Scholar]
- 105.Balasubramanian S.G.S. (2006) Sens. Actuat. B-Chem., 115, 150–157. [Google Scholar]
- 106.Gooding J.J. (2006) Analyt. Chim. Acta, 559, 137–151. [Google Scholar]