Abstract
As the world faces an impending dearth of fossil fuels, most immediately oil, alternative sources of energy must be found. 174 PW worth of energy falls onto the top of the Earth's atmosphere in the form of sunlight which is almost 10,000 times the total amount of energy used by humans on Earth, as taken from all sources, oil, coal, natural gas, nuclear and hydroelectric power combined. If even a fraction of this could be harvested efficiently, the energy crunch could in principle be averted. Various means for garnering energy from the Sun are presented, including photovoltaics (PV), thin film solar cells, quantum dot cells, concentrating PV and thermal solar power stations, which are more efficient in practical terms. Finally the prospects of space based (satellite) solar power are considered. The caveat is that even if the entire world electricity budget could be met using solar energy, the remaining 80% of energy which is not used as electricity but thermal power (heat) still needs to be found in the absence of fossil fuels. Most pressingly, the decline of cheap plentiful crude oil (peak oil) will not find a substitution via solar unless a mainly electrified transportation system is devised and it is debatable that there is sufficient time and conventional energy remaining to accomplish this. The inevitable contraction of transportation will default a deconstruction of the globalised world economy into that of a system of localised communities.
Keywords: photovoltaics, Grätzel cells, dye-sensitized solar cells, solar energy, solar power, quantum dots, thin film cells, satellites, peak oil, concentrating solar power, thermal solar power, space-based solar power
Full Text
The Full Text of this article is available as a PDF (9.3 MB).
References
- 1. http://en.wikipedia.org/wiki/Solar_energy
- 2. http://en.wikipedia.org/wiki/World_energy_resources_and_consumption
- 3.Rhodes C.J. (2008) The oil question: nature and prognosis. Sci. Prog., 91(4), 317–375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Gore A. (2006) An inconvenient truth: the planetary emergence of global warming and what we can do about it. Bloomsbury, London. [Google Scholar]
- 5.Turco R.P. (1997) Earth under siege. from air pollution to global change. Oxford University Press, Oxford. [Google Scholar]
- 6. http://en.wikipedia.org/wiki/sunlight
- 7.Rhodes C.J. (2009) Oil from algae, salvation from peak oil? Sci. Prog., 92(1), 39–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. http://www1.eere.energy.gov/solar/photovoltaics.html
- 9.Philibert C. (2005) The present and future use of solar thermal energy as a primary source of energy. http://www.iea.org/textbase/papers/2005/solarthermal.pdf
- 10. http://en.wikipedia.org/wiki/Solar_cell
- 11.Rhodes C.J. (2005) Energy balance. http://ergobalance@blogspot.com
- 12. http://en.wikipedia.org/wiki/List_of_photovoltaic_power_stations
- 13.Eiffert P., and Kiss G.J. (2000) Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Source Book for Architect.
- 14.Alsema E.A., de Wild-Scholten M.J., and Fthenakis V.M. (2006) Environmental impacts of PV electricity generation–a critical comparison of energy supply options. http://www.ecn.nl/publicaties/default.aspx?nr=ECN-RX-06-016
- 15.Rhodes C.J. (2008) Metals shortages. Chem. Indust., 25th August, 21–22. [Google Scholar]
- 16.Cohen D. (2007) Earth audit. New Scient., 26th May, 35–37. [Google Scholar]
- 17.ASTM G 173-03, (2003) Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface. ASTM Int., 2003. [Google Scholar]
- 18.Solar spectral irradiance: air mass 1.5 (2007) National Renewable Energy Laboratory. http://rredc.nrel.gov/solar/spectra/am1.5/
- 19.udel.edu/PR/UDaily. 2007-07-24. UD-led team sets solar cell record, joins DuPont on $100 million project. http://www.udel.edu/PRUDaily/2008/jul/solar072307.html.
- 20.Schultz O., Preu R., and Glunz S.W. (2007) Silicon solar cells with screen-printed front side metallization exceeding 19% efficiency. http://www.ise.fraunhofer.de/veroeffentlichungen/konferenzbeitraege/2007/22nd-european-photovoltaic-solar-energy-conference-and-exhibition-milano-italy-2007/silicon-solar-cells-with-screen-printed-front-side-metallization-exceeding-19-efficiency
- 21.Swanson R.M. (2000) The promise of concentrators. Prog. Photovolt. Res. Appl., 8, 93–111. [Google Scholar]
- 22.Zervos H., and Kahn B. (2008) Printed film photovoltaics and batteries. http://www.idtechex.com/research/reports/printed_and_thin_film_photovoltaics_and_batteries_000172.asp
- 23.Watkins G.D. (2000) Intrinsic defects in silicon. Mater. Sci. Semiconductors Process., 3(4), 227–235. [Google Scholar]
- 24. http://nobelprize.org/nobel_prizes/chemistry/laureates/2000/
- 25. http://www.thefreelibrary.com/Quantum-dot+leap:+tapping+tiny+crystals%27+inexplicable…-a0147259116
- 26. http://www.futurepundit.com/archives/002789.html
- 27.Lin G.H., Reyimjan A., and Bockris J.O'M. (1996) Investigation of resonance light absorption and rectification by subnanostructures. J. Appl. Phys., 80(1), 565–568. [Google Scholar]
- 28.Kotter D.K., Novack S.D., Slafer W.D., and Pinhero P. (2008) Solar nantenna electromagnetic collectors. http://www.inl.gov/pdfs/nantenna.pdf
- 29.Brabec C.J., Sariciftci N.S., and Hummelen J.K. (2001) Plastic solar cells. Adv. Funct. Mater., 11(1), 15–26. [Google Scholar]
- 30.Mayer A., Scully S., Hardin B., Rowell M., and McGehee M. (2007) Polymer-based solar cells. Mater. Today, 10, 28–33. [Google Scholar]
- 31.Wan H. (2004) Dye Sensitized Solar Cells. http://bama.ua.edu/∼chem/seminars/student_seminars/fall04/papers-f04/wan-sem.pdf
- 32.O'Regan B., and Grätzel M. (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737–740. [Google Scholar]
- 33.Yu Bai Yu., Cao Y., Zhang J., Wang M., Li R., Wang P., Zakeeruddin S.M., and Grätzel M. (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Mater., 7, 626–630. [DOI] [PubMed] [Google Scholar]
- 34.Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland (1999) Dye sensitized solar cells (DYSC) based on nanocrystalline oxide semiconductor films. http://lpi.e.pfl.ch/solarcellE.html
- 35.Berger M. (2007) Nanowires could lead to improved solar cells. http://blogs.epfl.ch/dyesolarcell
- 36.Wang Q., Campbell Wm., Bonfantani Ee., Jolley Kw., Officer Dl., Walsh Pj., Gordon K., Humphry-Baker R., Nazeeruddin M.K., and Grätzel M. (2005) Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films. J. Phys. Chem. B, 109(32), 15397–409. [DOI] [PubMed] [Google Scholar]
- 37.Zheng L.X. et al. (2004) Ultralong single-wall carbon nanotubes. Nature Mater., 3, 673–676. [DOI] [PubMed] [Google Scholar]
- 38.Landi B.J., Raffaelle R.P., Castro S.L., and Bailey S.G. (2005) Single-wall carbon nanotube-polymer solar cells. Prog. Photovolt: Res. Applicat., 13(2), 165–172. [Google Scholar]
- 39.Kymakis E., Alexandrou I., and Amaratunga G.A.J. (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. Prog. Photovolt: Res. Applicat., 93(3), 1764–1768. [Google Scholar]
- 40.Ago H., Petritsch K., Shaffer M.S.P., Windle A.H., and Friend R.H. (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater., 11(15), 1281–1285. [Google Scholar]
- 41.Miller A.J., Hatton R.A., and Silva S.R.P. (2006) Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics. Appl. Phys. Lett., 89(12), 123115–1–3. [Google Scholar]
- 42.Kymakis E., and Amaratunga G.A.J. (2002) Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett., 80(1), 112–114. [Google Scholar]
- 43.Raffaelle R.P., Landi B.J., Castro S.L., Ruf H.J., Evans C.M., and Bailey S.G. (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater. Solar Cells, 87(1-4), 733–746. [Google Scholar]
- 44.Kazaoui S., Minami N., Nalini B., Kim Y., and Hara K. (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J. Appl. Phys., 98(8), 084314. [Google Scholar]
- 45.Jin Young Kim, Lee Kwanghee, Coates Nelson E., Moses Daniel, Nguyen Thuc-Quyen, Dante M., and Heeger A.J. (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 317(5835), 222–225. [DOI] [PubMed] [Google Scholar]
- 46.Chappel S., Chen S.-G., and Zaban A. (2002) TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells. Langmuir, 18(8), 3336–3342. [Google Scholar]
- 47.Zhang Z., Ito S., O'Regan B., Daibin K., Zakeeruddin S.M., Liska P., Charvet R., Comte P., Nazeeruddin M.K., Pechy P., Humphry-Baker R., Koyanagi T., Mizuno T., and Grätzel M. (2007) The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells. Z. Phys. Chem., 221(3), 319–327. [Google Scholar]
- 48.Lee T.-Y., Alegaonkar P.S., and Yoo J.-B. (2007) Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films, 515(12), 5131–5135. [Google Scholar]
- 49.Kongkanand A., Dominguez R.M., and Kamat P.V. (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett., 7(3), 676–680. [DOI] [PubMed] [Google Scholar]
- 50.Olek M., Busgen T., Hilgendorff M., and Giersig M. (2006) Quantum dot modified multiwall carbon nanotubes. J. Phys. Chem. B, 110(26), 12901–12904. [DOI] [PubMed] [Google Scholar]
- 51.Hasobe T., Fukuzumi S., and Kamat P.V. (2006) Organized assemblies of single wall carbon nanotubes and porphyrin for photochemical solar cells: Charge injection from excited porphyrin into single-walled carbon nanotubes. J. Phys. Chem. B, 110(50), 25477–25484. [DOI] [PubMed] [Google Scholar]
- 52.Mor G.K., Shankar K., Paulose M., Varghese O.K., and Grimes C.A. (2006) Nanoletters, 6(2), 215–218. [DOI] [PubMed] [Google Scholar]
- 53.Salafsky J.S. (2001) A channel’ design using single, semiconductor nanocrystals for efficient (opto)electronic devices films. Solid-State Electron., 45(1), 53–58. [Google Scholar]
- 54.O'Regan B., and Gratzel M. (1991) A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(353), 737–740. [Google Scholar]
- 55.Ho M.-W. (2006) Ho MW. Quantum dots and ultra-efficient solar cells? Sci. Soc., 29, 48–49. [Google Scholar]
- 56.Murray C.B., Kagan C.R., and Bawendi M.G. (2000) Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu. Rev. Mater. Res., 30(1), 545–610. [Google Scholar]
- 57. http://en.wikipedia.org/wiki/Concentrating_solar_power
- 58.Jha A. (2009) Concentrated solar power could generate ‘quarter of world's energy’. http://www.guardian.co.uk/;environment/2009/may/26/solarpower-renewableenergy
- 59. http://www.timesofmalta.com/articles/view/20090715/world-news/euro-400-billion-plan-to-bring-african-solar-energy-to-europe
- 60. http://en.wikipedia.org/wiki/Trans-Mediterranean_Renewable_Energy_Cooperation
- 61.NASA Technical Briefs (2002) Semiconductor quantum dots as radiation-hard light emitters. http://findarticles.com/p/articles/mi_qa3957/is_200211/ai_n9152782/
- 62.Nelkon M., and Parker P. (1995) Advanced level physics, 7th edn, Heinemann, London. [Google Scholar]
- 63. http://en.wikipedia.org/wiki/Space-based_solar_power
- 64. http://www.spacedaily.com/news/ssp-03b.html
- 65.Solar Power Satellites, Washington, D.C.: Congress of the U.S., Office of Technology Assessment, August 1981, p. 66, LCCN 81600129 [Google Scholar]
- 66.Glenn involvement with laser power beaming-overview, NASA Glenn Research Center. [Google Scholar]
- 67.Hanley G.M. Satellite Concept Power Systems (SPS) Definition Study (PDF). NASA CR 3317, Sept 1980.http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800022396_1980022396.pdf.
- 68. http://www.hq.nasa.gov/webaccess/CommSpaceTrans/SpaceCommTransSec38/CommSpacTransSec38.html
- 69.O'Neil G.K. (1981) 2081: A hopeful view of the human future, pp. 182–183. Random House. [Google Scholar]
- 70.IEEE, 01149129.pdf
- 71.Solar power satellite offshore rectenna study, Final Report Rice Univ., Houston, TX., 11/1980, Abstract: http://adsabs.harvard.edu/abs/1980ruht.reptT [Google Scholar]
- 72.Freeman J.W. et al. , Offshore rectenna feasbility. In: NASA, Washington The Final Proc. of the Solar Power Satellite Program Rev. pp. 348–351 (SEE N82-22676 13-44). http://adsabs.harvard.edu/abs/1980spsp.nasa.348F.
- 73.IEEE Article No: 602864, Automatic beam steered antenna receiver–micro-wave.
- 74.O'Neil G.K. (2000) The high frontier, human colonies in space, 3rd edn, p. 57. Collector's Guide Publishing, Inc. [Google Scholar]
- 75.O'Neill G.K., Driggers G., and O'Leary B. (1980) New routes to manufacturing in space. astronautics and aeronautics, Vol. 18, 46–51. [Google Scholar]
- 76.Space resources, NASA SP-509, Vol. 1.