Abstract
Despite the availability of antibiotics and vaccines, infectious diseases remain one of most dangerous threats to humans and animals. The overuse and misuse of antibacterial agents have led to the emergence of multidrug resistant bacterial pathogens. Bacterial cells are often resilient enough to survive in even the most extreme environments. To do so, the organisms have evolved different mechanisms, including a variety of two-component signal transduction systems, which allow the bacteria to sense the surrounding environment and regulate gene expression in order to adapt and respond to environmental stimuli. In addition, some bacteria evolve resistance to antibacterial agents while many bacterial cells are able to acquire resistance genes from other bacterial species to enable them to survive in the presence of toxic antimicrobial agents. The crisis of antimicrobial resistance is an unremitting menace to human health and a burden on public health. The rapid increase in antimicrobial resistant organisms and limited options for development of new classes of antibiotics heighten the urgent need to develop novel potent antibacterial therapeutics in order to combat multidrug resistant infections. In this review, we introduce the regulatory mechanisms of antisense RNA and significant applications of regulated antisense RNA interference technology in early drug discovery. This includes the identification and evaluation of drug targets in vitro and in vivo, the determination of mode of action for antibiotics and new antibacterial agents, as well as the development of peptide-nucleic acid conjugates as novel antibacterials.
Keywords: antibacterial drug discovery, antisense RNA, PNAs, mode of action, Staphylococcus aureus, MRSA, Escherichia coli
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
References
- 1.Nishizawa M., Okumura T., Ikeya Y., and Kimura T. (2012) Front. Biosci., 17, 938–958. [DOI] [PubMed] [Google Scholar]
- 2.Tomizawa J., and Itoh T. (1981) Proc. Natl. Acad. Sci. USA, 78, 6096–6100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Stougaard P., Molin S., and Nordstrom K. (1981) Proc. Natl. Acad. Sci. USA, 78, 6008–6012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Simons R. W., and Kleckner N. (1983) Cell, 34, 683–691. [DOI] [PubMed] [Google Scholar]
- 5.Mizuno T., Chou M. Y., and Inouye M. (1984) Proc. Natl. Acad. Sci. USA, 81, 1966–1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Andersen J., Forst S. A., Zhao K., Inouye M., and Delihas N. (1989) J. Biol. Chem., 264, 17961–17970. [PubMed] [Google Scholar]
- 7.Liao S. M., Wu T. H., Chiang C. H., Susskind M. M., and McClure W. R. (1987) Genes Develop., 1, 197–203. [DOI] [PubMed] [Google Scholar]
- 8.Krinke L., and Wulff D. L. (1987) Genes Develop., 1, 1005–1013 [DOI] [PubMed] [Google Scholar]
- 9.Livny J., Teonadi H., Livny M., and Waldor M. K. (2008) PLoS One., 3, e3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Weinberg Z., Barrick J. E., Yao Z., Roth A., Kim J. N., Gore J., Wang J. X., Lee E. R., Block K. F., Sudarsan N., Neph S., Tompa M., Ruzzo W. L., and Breaker R. R. (2007) Nucleic Acids Res., 35, 4809–4819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Sittka A., Lucchini S., Papenfort K., Sharma C. M., Rolle K., Binnewies T. T., Hinton J. C., and Vogel J. (2008) PLoS Genetics., 4, e1000163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Landt S. G., Abeliuk E., McGrath P. T., Lesley J. A., McAdams H. H., and Shapiro L. (2008) Mol. Microbiol., 68, 600–614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Weaver K. E. (2007) Curr. Opin. Microbiol., 10, 110–116. [DOI] [PubMed] [Google Scholar]
- 14.Gottesman S., and Storz G. (2011) Cold Spring Harbor Perspectives in Biology, 3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Kawano M., Aravind L., and Storz G. (2007) Mol. Microbiol., 64, 738–754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Opdyke J. A., Kang J. G., and Storz G. (2004) J. Bacteriol., 186, 6698–6705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Andre G., Even S., Putzer H., Burguiere P., Croux C., Danchin A., Martin-Verstraete I., and Soutourina O. (2008) Nucleic Acids Res., 36, 5955–5969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Eiamphungporn W., and Helmann J. D. (2009) J. Bacteriol., 191, 1101–1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Lioliou E., Romilly C., Romby P., and Fechter P. (2010) New Biotechnol., 27, 222–235. [DOI] [PubMed] [Google Scholar]
- 20.Waters L. S., and Storz G. (2009) Cell, 136, 615–628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Brantl S. (2007) Curr. Opin. Microbiol., 10, 102–109. [DOI] [PubMed] [Google Scholar]
- 22.Kolb F. A., Engdahl H. M., Slagter-Jager J. G., Ehresmann B., Ehresmann C., Westhof E., Wagner E. G., and Romby P. (2000) EMBO J., 19, 5905–5915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Thisted T., Sorensen N. S., Wagner E. G., and Gerdes K. (1994) EMBO J., 13, 1960–1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Thomason M. K., and Storz G. (2010) In: Campbell, A., Lichten, M. and Schupbach, G. (eds) Ann. Rev. Genet., 44, 167–188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Carpousis A. J., Luisi B. F., and McDowall K. J. (2009) Prog. Molec. Biol. Trans. Sci., 85, 91–135. [DOI] [PubMed] [Google Scholar]
- 26.Pfeiffer V., Papenfort K., Lucchini S., Hinton J. C., and Vogel J. (2009) Nat. Struct. Mol. Biol., 16, 840–846. [DOI] [PubMed] [Google Scholar]
- 27.Opdyke J. A., Kang J. G., and Storz G. (2004) J. Bacteriol., 186, 6698–6705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Eisen M.B., and Brown P.O. (1999) Meth. Enzymol., 303, 179–205. [DOI] [PubMed] [Google Scholar]
- 29.Beauregard M. C., Pringault E., Robine S., and Louvard D. (1995) EMBO J., 14, 409–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Fire A., Cu S., Montgomery M. K., Kostas S. A., Driver S. E., and Mello C. C. (1998) Nature, 391, 806–810. [DOI] [PubMed] [Google Scholar]
- 31.Liang X., and Ji Y. (2007) Cell. Microbiol., 9, 1809–1821. [DOI] [PubMed] [Google Scholar]
- 32.Kernodle D. S., Voladri R. R., Menzies B. E., Hager C. C., and Edwards K. M. (1997) Infect. Immun., 65, 179–184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Good L., and Nielsen P. E. (1998) Nature Biotechnol., 16, 355–358. [DOI] [PubMed] [Google Scholar]
- 34.Ji Y., Marra A., Rosenberg M., and Woodnutt G. (1999) J. Bacteriol., 181, 6585–6590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Ji Y., Zhang B., van Horn S. F., Warren P., Woodnutt G., Burnham M. R., and Rosenberg M. (2001) Science, 293, 2266–2299. [DOI] [PubMed] [Google Scholar]
- 36.Geissendorfer M., and Hillen W. (1990) Appl. Microbiol. biotechnol., 33, 657–663. [DOI] [PubMed] [Google Scholar]
- 37.Stieger M., Wohlgensinger B., Kamber M., Lutz R., and Keck W. (1999) Gene, 226, 243–251. [DOI] [PubMed] [Google Scholar]
- 38.Ehrt S, Guo X. V., Hickey C. M., Ryou M., Monteleone M., Riley L. W., and Schnappinger D. (2005) Nucleic Acids Res., 33(2): e21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Heath R. J., and Rock C. O. (1995) J. Biol. Chem., 270, 26538–26542. [DOI] [PubMed] [Google Scholar]
- 40.Ji Y., Yin D., Fox B., Holmes D. J., Payne D., and Rosenberg M. (2004) FEMS Microbiol. Lett., 231, 177–184. [DOI] [PubMed] [Google Scholar]
- 41.Chang S.Y., McGary E. C., and Chang S. (1989) J. Bacteriol., 171, 4070–4072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Yang J., Zheng L., and Ji Y. (2006) World J. Microbiol. Biotechnol., 22, 299–303. [Google Scholar]
- 43.Zheng L., Yang J., Landwehr C., Fan F., and Ji Y. (2005) FEMS Microbiol. Lett., 245, 279–285. [DOI] [PubMed] [Google Scholar]
- 44.Zheng L., Yu C., Bayles K., Lasa I., and Ji Y. (2007) J. Bacteriol., 189, 2734–2742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Lei T., Liang X., Yang J., Yan M., Zheng L., Walcheck B., and Ji Y. (2011) PLoS One, 6(5), e20163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Lei T., Yang J., Zheng L., Markowski T., Witthuhn B. A., and Ji Y. (2012) PLoS One, 7(10), e46836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Sun J, Zheng L, Landwehr C, Yang J, Ji Y. (2005) J. Bacteriol., 187, 7876–7880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Patton T., Rice K., Foster M., and Bayles K. (2005) Mol. Microbiol., 56, 1664–1674. [DOI] [PubMed] [Google Scholar]
- 49.Yu X., Zheng L., Yang J., and Ji Y. (2011) World J. Microbiol. Biotechnol., 27, 897–905. [Google Scholar]
- 50.Corrigan R. M., and Foster T. J. (2009) Plasmid, 61, 126–129. [DOI] [PubMed] [Google Scholar]
- 51.Stary E., Gaupp R., Lechner S., Leibig M, Tichy E., Kolb M., and Bertram R. (2010) Appl. Environ. Microbiol., 76, 680–687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Helle L., Kull M., Mayer S., Marincola G., Zelder M. E., Goerke C., Wolz C., and Bertram R. (2011) Microbiol., 157, 3314–3323. [DOI] [PubMed] [Google Scholar]
- 53.Williams K. J., Joyce G., and Robertson B. D. (2010) Plasmid, 64, 69–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Yan M., Yu C., Yang J., and Ji Y. (2011) J. Bacteriol., 193, 1799–805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Yan M., Hall J., Yang J., and Ji Y. (2012) Plos One, 7(11), e50608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Wang B., and Kuramitsu H. K. (2003) FEMS Microbiol. Lett., 220, 171–176. [DOI] [PubMed] [Google Scholar]
- 57.Wang B., and Kuramitsu H. K. (2005) Infect. Immun., 73, 3568–3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Fagan R. P., and Fairweather N. F. (2011) J. Biol. Chem., 286, 27483–27493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Connan C., Brueggemann H., Mazuet C., Raffestin S., Cayet N., and Popoff M. R. (2012) PLoS One., 7, e41848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Silver L. (2011) Clin. Microbiol. Rev., 24, 71–109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Cooper M. A., and Shlaes D. (2011) Nature, 472, 32. [DOI] [PubMed] [Google Scholar]
- 62.Mei J. M., Nourbakhsh F., Ford C. W., and Holden D. W. (1997) Mol. Microbiol., 26, 399–407. [DOI] [PubMed] [Google Scholar]
- 63.Jackson R. W., and Giddens S. R. (2006) Infect. Disord. Drug Targets., 6, 207–40. [DOI] [PubMed] [Google Scholar]
- 64.Forsyth R. A., Haselbeck R. J., Ohlsen K. L. et al. (2002) Mol. Microbiol., 43, 1387–1400. [DOI] [PubMed] [Google Scholar]
- 65.Meng J., Kanzaki G., Meas D., Lam C. K., Crummer H., Tain J., and Cu H. H. (2012) FEMS. Microbiol. Lett., 329, 45–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Wagner E. G., and Flardh K. (2002) Trends Genet., 18, 223–226. [DOI] [PubMed] [Google Scholar]
- 67.Chen G., Patten C. L., and Schelihorn H. E. (2003) Antimicrob. Agents Chemother., 47, 3485–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Nakashima N., and Tamura T. (2009) Nucleic Acids Res., 37(15), e103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Nakashima N., Goh S., Good L., and Tamura T. (2012) Meth. Mol. Biol., 815, 307–319. [DOI] [PubMed] [Google Scholar]
- 70.Payne D. J., Gwynn M. N., Holmes D. J., and Pompliano D. L. (2007) Nat. Rev. Drug Discov., 6, 29–40. [DOI] [PubMed] [Google Scholar]
- 71.Zhang L., Fan F., Palmer L. M., Lonetto M. A., Petit C., Voelker L. L., St. John A., Bankosky B., Rosenberg M., and McDevitt D. (2000) Gene, 255, 297–305. [DOI] [PubMed] [Google Scholar]
- 72.Chan P.F., O'Dwyer K., Palmer L., Ambrad J., Ingraham K., So C., Lonetto M., Biswas S., Rosenberg M., Holmes D., and Zalacain M. (2003) J. Bacteriol., 185, 2051–2058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.McMurry L.M., Oethinger M., Levy S. B. (1998) Nature, 394, 531–532. [DOI] [PubMed] [Google Scholar]
- 74.Heath R.J., Yu Y.-T., Shapiro M.A., Olson E., and Rock C.O. (1998) J. Biol. Chem., 273, 30316–30320. [DOI] [PubMed] [Google Scholar]
- 75.Chen D.Z., Petel D.V., Hackbarth C.J., Wang W., Dreyer G., Young D.C., Margolis P.S., Wu C., Ni Z.J.T.J., White R.J., and Yuan Z. (2000) Biochemistry, 39, 1256–1262. [DOI] [PubMed] [Google Scholar]
- 76.Kedar G. C., Brown-Driver V., Reyes D. R., Hilgers M. T., Stidham M. A., Shaw K. J., Finn J., and Haselbeck R. J. (2007) Antimicrob. Agents Chemother., 51, 1708–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Andries K., Verhasselt P., Guillemont J. et al. (2005) Science, 307, 223–227. [DOI] [PubMed] [Google Scholar]
- 78.Li X., Zolli-Juran M., Cechetto J. D., Daigle D. M., Wright G. D., and Brown E. D. (2004) Chem. Biol., 11, 1423–1430. [DOI] [PubMed] [Google Scholar]
- 79.Khodursky A.B., Peter B.J., Schmid M.B., DeRisi J., Botstein D., Brown P.O., and Cozzarelli N.R. (2000. Proc. Natl. Acad. Sci. USA, 97, 9419–9424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Bandow J. E., Brotz H., Leichert L. I. O., Labischinski H., and Hecker M. (2003) Antimicrob. Agents Chemother., 47, 948–955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Wright G. (2009) Cell Host Microbe, 6, 197–198. [DOI] [PubMed] [Google Scholar]
- 82.Yin D., Fox B., Lonetto M. L., Etherton M. R., Payne D. J., Holmes D. J., Rosenberg M., and Ji Y. (2004) Pharmacogenomics, 5, 101–13. [DOI] [PubMed] [Google Scholar]
- 83.Young K., Jayasuriya H., Ondeyka J. G. et al. Antimicrob. Agents Chemother., 50, 519–526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Nisa S., Blokpoel M. C., Robertson B. D., Tyndall J. D., Lun S., Bishai W. R., and O'Toole R. (2010) J. Antimicrob. Chemother., 65, 2347–2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Donald R. G., Skwish S., Forsyth R. A. et al. (2009) Chem. Biol., 16, 826–836. [DOI] [PubMed] [Google Scholar]
- 86.Huber J., Donald R. G., Lee S. H. et al. (2009) Chem. Biol., 16, 837–48. [DOI] [PubMed] [Google Scholar]
- 87.Phillips J. W., Goetz M. A., Smith S. K. et al. Chem. Biol., 18, 955–65. [DOI] [PubMed] [Google Scholar]
- 88.Singh S. B., Zink D. L., Dorso K., Motyl M., Salazar O., Basilio A., Vicente F., Byrne K. M., Ha S., and Genilloud O. (2009) J. Nat. Prod., 72, 345–352. [DOI] [PubMed] [Google Scholar]
- 89.Grossen M., Freundlieb S., Bender G., Müller G., Hillen W., and Bujard H. (1995) Science, 268, 1766–1769. [DOI] [PubMed] [Google Scholar]
- 90.Nekhotiaeva N., Awasthi S. K., Nielsen P. E., and Good L. (2004) Mol. Ther., 10, 652–659. [DOI] [PubMed] [Google Scholar]
- 91.Kurupati P., Tan K. S. W., Kumarasinghe G., and Poh C. L. (2007) Antimicrob. Agents Chemother., 51, 805–811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Lee L. K., and Roth C. M. (2003) Curr. Opin. Biotechnol., 14, 505–511. [DOI] [PubMed] [Google Scholar]
- 93.Hatamoto M., Ohashi A., and Imachi H. (2010) Appl. Microbiol. Biotechnol., 86, 397–402. [DOI] [PubMed] [Google Scholar]
- 94.Deere J., Iversen P., and Geller B. L. (2005) Antimicrob. Agents Chemother., 49, 249–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Good L., Awasthi S. K., Dryselius R., Larsson O., and Nielsen P. E. (2001) Nat. Biotechnol., 19, 360–364. [DOI] [PubMed] [Google Scholar]
- 96.Dryselius R., Nekhotiaeva N., and Good L. (2005) J. Antimicrob. Chemother., 56, 97–103. [DOI] [PubMed] [Google Scholar]
- 97.Kurupati P, Tan KS, Kumarasinghe G, Poh CL. (2007) Antimicrob. Agents Chemother., 51, 805–811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Bai H., You Y., Yan U., Meng J., Xue X., Hou Z., Zhou Y., Ma X., Sang G., and Luo X. (2012) Biomaterials, 33, 659–67. [DOI] [PubMed] [Google Scholar]
- 99.Bai H., Sang G., You Y., Xue X., Zhou Y., Hou Z., Meng J., and Luo X. (2012) PLoS One, 7(1), e29886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Ghosal A., and Nielsen P. E. (2012) Nucl. Acid Therapeut., 22, 323–334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Ghosal A., Vitali A., Stach J. E., and Nielsen P. E. (2012) ACS Chem. Biol., 10.1021/cb300434e [DOI] [PubMed] [Google Scholar]
- 102.Puckett S. E., Reese K. A., Mitev G. M., Mullen V., Johnson R. C., Pomraning K. R., Mellbye B. L., Tilley L. D., Iversen P. L., Freitag M., and Geller B. L. (2012) Antimicrob. Agents Chemother., 56, 6147–6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Good L., Awasthi S. K., Dryselius R., Larsson O., and Nielsen P. E. (2001) Nat. Biotechnol., 19, 360–364. [DOI] [PubMed] [Google Scholar]
- 104.Kaur P., Agarwal S., and Datta S. (2009) PLoS One., 4, e5923. [DOI] [PMC free article] [PubMed] [Google Scholar]