Abstract
The capabilities of organisms to contend with environmental changes depend on their genes and their ability to regulate their expression. DNA-binding transcription factors (TFs) play a central role in this process, because they regulate gene expression positively and/or negatively, depending on the operator context and ligand-binding status. In this review, we summarise recent findings regarding the function and evolution of TFs in prokaryotes. We consider the abundance of TFs in bacteria and archaea, the role of DNA-binding domains and their partner domains, and the effects of duplication events in the evolution of regulatory networks. Finally, a comprehensive picture for how regulatory networks have evolved in prokaryotes is provided.
Keywords: transcription factors, regulatory networks, bacteria, archaea, genomics, DNA-binding domain, partner domain
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
References
- 1.Browning D.F., and Busby S.J. (2004) Nat.Rev. Microbiol., 2, 57–65. [DOI] [PubMed] [Google Scholar]
- 2.Madan Babu M., and Teichmann S.A. (2003) Nucleic Acids Res., 31, 1234–1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Moreno-Campuzano S., Janga S.C., and Perez-Rueda E. (2006) BMC Genomics, 7, 147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Brune I., Brinkrolf K., Kalinowski J., Puhler A., and Tauch A. (2005) BMC Genomics, 6, 86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Tenorio-Salgado S., Huerta-Saquero A., and Perez-Rueda E. (2011) Comput. Biol. Chem., 35, 341–346. [DOI] [PubMed] [Google Scholar]
- 6.Perez-Rueda E., and Janga S.C. (2010) Mol. Biol. Evol., 27, 1449–1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Charoensawan V., Wilson D., and Teichmann S.A. (2010) Nucleic Acids Res., 38, 7364–7377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Perez-Rueda E., Collado-Vides J., and Segovia L. (2004) Comput. Biol. Chem., 28, 341–350. [DOI] [PubMed] [Google Scholar]
- 9.Bhardwaj N., Carson M.B., Abyzov A., Yan K.K., Lu H., and Gerstein M.B. (2010) PLoS Comput. Biol., 6, e1000755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Keseler I.M., Collado-Vides J., Santos-Zavaleta A., Peralta-Gil M., Gama-Castro S., Munis-Rascado L., Bonavides-Martinez C., Paley S., Krummenacker M., Altman T., Kaipa P., Spaulding A., Pacheco J., Latendresse M., Fulcher C., Sarker M., Shearer A.G., Mackie A., Paulsen I., Gunsalus R.P., and Karp P.D. (2011) Nucleic Acids Res., 39, D583–590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Lee J.S., Son B., Viswanathan P., Luethy P.M., and Kroos L. (2011) J. Bacteriol., 193, 1681–1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Mittal S., and Kroos L. (2009) J. Bacteriol., 191, 2753–2763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Sierro N., Makita Y., de Hoon M., and Nakai K. (2008) Nucleic Acids Res., 36, D93–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Bell S.D. (2005) Trends Microbiol., 13, 262–265. [DOI] [PubMed] [Google Scholar]
- 15.Ulrich L.E., Koonin E.V., and Zhulin I.B. (2005) Trends Microbiol., 13, 52–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Aravind L., and Koonin E.V. (1999) Nucleic Acids Res., 27, 4658–4670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Chaikam V., and Karlson D.T. (2010) BMB Rep., 43, 1–8. [DOI] [PubMed] [Google Scholar]
- 18.Itzkovitz S., Tlusty T., and Alon U. (2006) BMC Genomics, 7, 239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Gotfredsen M., and Gerdes K. (1998) Mol. Microbiol., 29, 1065–1076. [DOI] [PubMed] [Google Scholar]
- 20.Ranea J.A., Buchan D.W., Thornton J.M., and Orengo C.A. (2004) J. Mol. Biol., 336, 871–887. [DOI] [PubMed] [Google Scholar]
- 21.Ranea J.A., Grant A., Thornton J.M., and Orengo C.A. (2005) Trends Genet., 21, 21–25. [DOI] [PubMed] [Google Scholar]
- 22.Cases I., de Lorenzo V., and Ouzounis C.A. (2003) Trends Microbiol., 11, 248–253. [DOI] [PubMed] [Google Scholar]
- 23.Cherry J.L. (2003) J. Theor. Biol., 221, 401–410. [DOI] [PubMed] [Google Scholar]
- 24.Janga S.C., and Perez-Rueda E. (2009) Comput. Biol. Chem., 33, 261–268. [DOI] [PubMed] [Google Scholar]
- 25.Perez-Rueda E., Janga S.C., and Martinez-Antonio A. (2009) Mol. Biosyst., 5, 1494–1501. [DOI] [PubMed] [Google Scholar]
- 26.Miller M.B., and Bassler B.L. (2001) Annu. Rev. Microbiol., 55, 165–199. [DOI] [PubMed] [Google Scholar]
- 27.Rigali S., Schlicht M., Hoskisson P., Nothaft H., Merzbacher M., Joris B., and Titgemeyer F. (2004) Nucleic Acids Res., 32, 3418–3426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Rivera-Gomez N., Segovia L., and Perez-Rueda E. (2011) Microbiology, 157, 2308–2318. [DOI] [PubMed] [Google Scholar]
- 29.Wang L., Wang F.F., and Qian W. (2011) J. Genet. Genomics, 38, 279–288. [DOI] [PubMed] [Google Scholar]
- 30.Shen-Orr S.S., Milo R., Mangan S., and Alon U. (2002) Nat. Genet., 31, 64–68. [DOI] [PubMed] [Google Scholar]
- 31.Perez J.C., and Groisman E.A. (2009) Cell, 138, 233–244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Perez J.C., and Groisman E.A. (2009) Proc. Natl. Acad. Sci. USA, 106, 4319–4324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Martinez-Nunez M.A., Perez-Rueda E., Gutierrez-Rios R.M., and Merino E. (2010) Microbiology, 156, 14–22. [DOI] [PubMed] [Google Scholar]
- 34.Teichmann S.A., and Babu M.M. (2004) Nat. Genet., 36, 492–496. [DOI] [PubMed] [Google Scholar]
- 35.Santos C.L., Tavares F., Thioulouse J., and Normand P. (2009) FEMS Microbiol. Rev., 33, 411–429. [DOI] [PubMed] [Google Scholar]
- 36.Goodman A.L., and Lory S. (2004) Curr. Opin. Microbiol., 7, 39–44. [DOI] [PubMed] [Google Scholar]
