Skip to main content
Science Progress logoLink to Science Progress
. 2011 Dec 1;94(4):431–450. doi: 10.3184/003685011X13201828216868

Analysis of Bacterial Surface Interactions Using Microfluidic Systems

Aaron P Mosier 2, Nathaniel C Cady 1,
PMCID: PMC10365532  PMID: 22308903

Abstract

Modern microbiological research has increasingly focused on the interactions between bacterial cells and the surfaces that they inhabit. To this end, microfluidic devices have played a large role in enabling research of cell-surface interactions, especially surface attachment and biofilm formation. This review provides background on microfluidic devices and their use in biological systems, as well specific examples from current literature. Methods to observe and interrogate cells within microfluidic devices are described, as well as the analytical techniques that are used to collect these data.

Keywords: microfluidics, bacteria, measurement, analysis, fluid, microchip, adhesion, biofilm

Full Text

The Full Text of this article is available as a PDF (207.7 KB).

References

  • 1.Katsikogianni M.G., and Missirlis Y.F. (2009) Acta Biomater., 6(3), 1107–1118. [DOI] [PubMed] [Google Scholar]
  • 2.Whitehead K.A., Rogers D., Colligon J., Wright C., and Verran J. (2006) Colloids Surface B Biointerfaces, 51(1), 44–53. [DOI] [PubMed] [Google Scholar]
  • 3.Eginton P.J., Gibson H., Holah J., Handley P.S., and Gilbert P. (1995) Colloids Surface B: Biointerfaces, 5(3-4), 153–159. [Google Scholar]
  • 4.Thomas W.E., Trintchina E., Forero M., Vogel V., and Sokurenko E.V. (2002) Cell, 109(7), 913–923. [DOI] [PubMed] [Google Scholar]
  • 5.O'Toole G., Kaplan H.B., and Kolter R. (2000) Annu. Rev. Microbiol., 54(1), 49–79. [DOI] [PubMed] [Google Scholar]
  • 6.Costerton J.W., Stewart P.S., and Greenberg E.P. (1999) Science, 284(5418), 1318–1322. [DOI] [PubMed] [Google Scholar]
  • 7.Fux C.A., Costerton J.W., Stewart P.S., and Stoodley P. (2005) Trends Microbiol., 13(1), 34–40. [DOI] [PubMed] [Google Scholar]
  • 8.Stewart P.S., and Costerton J.W. (2001) Lancet, 358(9276), 135–138. [DOI] [PubMed] [Google Scholar]
  • 9.O'Toole G., Kaplan H.B., and Kolter R. (2000) Annu. Rev. Microbiol., 54, 49–79. [DOI] [PubMed] [Google Scholar]
  • 10.Andersson H., and van den Berg A. (2003) Sensors Actuat. B: Chem., 92(3), 315–325. [Google Scholar]
  • 11.Fair R.B., Khlystov A., Tailor T.D., Ivanov V., Evans R.D., Griffin P.B. et al. (2007) Design and Test of Computers, IEEE, 24(1), 10–24. [Google Scholar]
  • 12.Shaikh K.A., Ryu K.S., Goluch E.D., Nam J.M., Liu J., Thaxton C.S. et al. (2005) Proc. Natl. Acad. Sci. USA, 102(28), 9745–9750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Sia S.K., and Whitesides G.M. (2003) Electrophoresis, 24(21), 3563–3576. [DOI] [PubMed] [Google Scholar]
  • 14.Qi S., Liu X., Ford S., Barrows J., Thomas G., Kelly K. et al. (2002) Lab. Chip, 2, 88–95. [DOI] [PubMed] [Google Scholar]
  • 15.Mair D.A., Geiger E., Pisano A.P., Frechet J.M.J., and Svec F. (2006) Lab. Chip, 6, 1346–1354. [DOI] [PubMed] [Google Scholar]
  • 16.Xia Y., and Whitesides G.M. (1998) Angew. Chem., 37(5), 550–575. [DOI] [PubMed] [Google Scholar]
  • 17.Friend J., and Yeo L. (2009) Biomicrofluidics, 4(2), 026502–026505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zhang C., Xu J., Ma W., and Zheng W. (2006) Biotechnol. Adv., 24, 243–284. [DOI] [PubMed] [Google Scholar]
  • 19.Xia Y., and Whitesides G.M. (1998) Angew. Chem. Int. Ed., 37, 550–575. [DOI] [PubMed] [Google Scholar]
  • 20.Cady N.C., Stelick S., Kunnavakkam M.V., Liu Y., and Batt C.A. (2004) Proc. IEEE Sensors 2004, 1191–1194. [Google Scholar]
  • 21.Cady N.C., Stelick S., Kunnavakkam M.V., and Batt C.A. (2005) Sensors Actuat. B, 107(1), 332–341. [Google Scholar]
  • 22.Cady N.C., Stelick S., and Batt C.A. (2003) Biosens. Bioelectron., 19(1), 59–66. [DOI] [PubMed] [Google Scholar]
  • 23.Roxhed N., Rydholm S., Samuel B., Wijngaart W.v.d., Griss P., and Stemme G. (2006) J. Micromech. Microeng., 16(2740-2746). [Google Scholar]
  • 24.Cooney C.G., and Towe B.C. (2004) Sensor Actuat. A Phys., 116(3), 519–524. [Google Scholar]
  • 25.Zeng S., Chen C.-H., James C., Mikkelsen J., and Santiago J.G. (2001) Sensor Actuat. B Chem., 79(2-3), 107–114. [Google Scholar]
  • 26.Machauf A., Nemirovsky Y., and Dinnar U. (2005) J. Micromech. Microeng., 15, 2309–2316. [Google Scholar]
  • 27.Sounart T.L., Michalske T.A., and Zavadil K.R. (2005) J. Microelectromech. Syst., 14(1), 125–133. [Google Scholar]
  • 28.Kock M., Harris N., Evans A.G.R., White N.M., and Brunnschweiler A. (1998) Sensor Actuat. A Phys., 70(1-2), 98–103. [Google Scholar]
  • 29.Yang Z., Matsumoto S., Goto H., Matsumoto M., and Maeda R. (2001) Sensor Actuat. A Phys., 93(3), 266–272. [Google Scholar]
  • 30.Graf N.J., and Bowser M.T. (2008) Lab. Chip, 8, 1664–1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Lemoff A.V., and Lee A.P. (2000) Sensor Actuat. B Chem., 63(3), 178–185. [Google Scholar]
  • 32.Rinderknecht D., and Hickerson A.I. (2005) J. Micromech. Microeng., 15(2005), 861–866. [Google Scholar]
  • 33.Yamamata C., Lotto C., Al-Assaf E., and Gijs M.A.M. (2005) Microfluid. Nanofluidics, 1(3), 197–207. [Google Scholar]
  • 34.Harmon M.E., Tang M., and Frank C.W. (2003) Polymer, 44(16), 4547–4556. [Google Scholar]
  • 35.Bassetti M.J., Chatterjee A.N., Aluru N.R., and Beebe D.J. (2005) J. Microelectromech. Syst., 14(5), 1198–1207. [Google Scholar]
  • 36.Weigl B., Domingo G., LaBarre P., and Gerlach J. (2008) Lab. Chip, 8, 1999–2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Yu Q., Bauer J.M., Moore J.S., and Beebe D.J. (2001) Appl. Phys. Lett., 78(17), 2589–2591. [Google Scholar]
  • 38.Studer V., Hang G., Pandolfi A., Ortiz M., Anderson W.F., and Quake S.R. (2004) J. Appl. Phys., 95(1), 393–398. [Google Scholar]
  • 39.Selvaganapathy P., Carlen E.T., and Mastangelo C.H. (2003) Sensor Actuat. A Phys., 104, 275–282. [Google Scholar]
  • 40.Grover W.H., Skelley A.M., Liu C.N., Lagally E.T., and Mathies R.A. (2003) Sensor Actuat. B Chem., 89(3), 315–323. [Google Scholar]
  • 41.Liu R.H., Bonanno J., Yang J., Lenigk R., and Grodzinski P. (2004) Sensor Actuat. B Chem., 98(2-3), 328–336. [Google Scholar]
  • 42.Feng Y., Zhou Z., Ye X., and Xiong J. (2003) Sensor Actuat. A Phys., 108(1-3), 138–143. [Google Scholar]
  • 43.Hua S.Z., Sachs F., Yang D.X., and Chopra H.D. (2002) Anal. Chem., 74(24), 6392–6396. [DOI] [PubMed] [Google Scholar]
  • 44.Stoeber B., Yang Z., Liepmann D., and Muller S.J. (2005) J. Microelectromech. Syst., 14(2), 207–213. [Google Scholar]
  • 45.Tsai J.-H., and Lin L. (2002) Sensor Actuat. A Phys., 97–98, 665–671. [Google Scholar]
  • 46.Garstecki P., Fuerstman M.J., Fischbach M.A., Sia S.K., and Whitesides G.M. (2006) Lab. Chip, 6, 207–212. [DOI] [PubMed] [Google Scholar]
  • 47.Suzuki H., Ho C.-M., and Kasagi N. (2004) J. Microelectromech. Syst., 13(5), 779–790. [Google Scholar]
  • 48.Stroock A.D., Dertinger S.K.W., Ajdari A., Mezic I., Stone H.A., and Whitesides G.M. (2002) Science, 295(5555), 647–651. [DOI] [PubMed] [Google Scholar]
  • 49.Hong C.-C., Choi J.-W., and Ahn C.H. (2004) Lab. Chip, 4, 109–113. [DOI] [PubMed] [Google Scholar]
  • 50.Lin Y.-C., Chung Y.-C., and Wu C.-Y. (2007) Biomed. Microdevices, 9, 215–221. [DOI] [PubMed] [Google Scholar]
  • 51.De La Fuente L., Montanes E., Meng Y., Li Y., Burr T.J., Hoch H.C. et al. (2007) Appl. Environ. Microbiol., 73(8), 2690–2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Weaver W.M., Dharmaraja S., Milisavljevic V., and Di Carlo D. (2011) Lab. Chip, 11(5), 883–889. [DOI] [PubMed] [Google Scholar]
  • 53.Skolimowski M., Nielsen M.W., Emneus J., Molin S., Taboryski R., Sternberg C. et al. (2010) Lab. Chip, 10(16), 2162–2169. [DOI] [PubMed] [Google Scholar]
  • 54.Bahar O., De La Fuente L., and Burdman S. (2010) FEMS Microbiol. Lett., 312(1), 33–39. [DOI] [PubMed] [Google Scholar]
  • 55.Christ K., Williamson K., Masters K., and Turner K. (2010) Biomedical Microdevices, 12(3), 443–455. [DOI] [PubMed] [Google Scholar]
  • 56.Lu H., Koo L.Y., Wang W.M., Lauffenburger D.A., Griffith L.G., and Jensen K.F. (2004) Anal. Chem., 76(18), 5257–5264. [DOI] [PubMed] [Google Scholar]
  • 57.Cox J.D., Curry M.S., Skirboll S.K., Gourley P.L., and Sasaki D.Y. (2002) Biomaterials, 23(3), 929–935. [DOI] [PubMed] [Google Scholar]
  • 58.Otto K. (2008) Res. Microbiol., 159(6), 415–422. [DOI] [PubMed] [Google Scholar]
  • 59.Emerson R.J.I.V., and Camesano T.A. (2004) Appl. Environ. Microbiol., 70(10), 6012–6022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Gaboriaud F., and Dufrêne Y.F. (2007) Colloids Surfaces B: Biointerfaces, 54(1), 10–19. [DOI] [PubMed] [Google Scholar]
  • 61.Lower S.K., Hochella M.F., and Beveridge T.J. (2001) Science, 292(5520), 1360–1363. [DOI] [PubMed] [Google Scholar]
  • 62.Kang S., and Elimelech M. (2009) Langmuir, 25(17), 9656–9659. [DOI] [PubMed] [Google Scholar]
  • 63.Dupres V., Alsteens D., Andre G., and Dufrêne Y.F. (2010) Trends Microbiol., 18(9), 397–405. [DOI] [PubMed] [Google Scholar]
  • 64.Scheuring S., and Dufrêne Y.F. (2010) Molec. Microbiol., 75(6), 1327–1336. [DOI] [PubMed] [Google Scholar]
  • 65.Park K., Jang J., Irimia D., Sturgis J., Lee J., Robinson J.P. et al. (2008) Lab. Chip, 8(7), 1034–1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Chau L., Doran M., and Cooper-White J. (2009) Lab. Chip, 9(13), 1897–1902. [DOI] [PubMed] [Google Scholar]
  • 67.Nagai M., Asai H., and Fujita H. (2010) Biomicrofluidics, 4(3), 034109–034111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Lewandowski Z., and Beyenal H. (2007) Fundamentals of biofilm research, CRC Press. [Google Scholar]
  • 69.O'Toole G.A., and Kolter R. (1998) Mol. Microbiol., 30(2), 295–304. [DOI] [PubMed] [Google Scholar]
  • 70.Bin Y. et al. (2008) Nanotechnology, 19(33), 335101. [DOI] [PubMed] [Google Scholar]
  • 71.Garrett T.R., Bhakoo M., and Zhang Z. (2008) Prog. Nat. Sci., 18(9), 1049–1056. [Google Scholar]
  • 72.Yawata Y., Toda K., Setoyama E., Fukuda J., Suzuki H., Uchiyama H. et al. (2010) J. Biosci. Bioeng., 110(3), 377–380. [DOI] [PubMed] [Google Scholar]
  • 73.Shumi W., Lim J., Nam S.-W., Lee K., Kim S., Kim M.-H. et al. (2010) BioChip J., 4(4), 257–263. [Google Scholar]
  • 74.Kim K.P., Kim Y.-G., Choi C.-H., Kim H.-E., Lee S.-H., Chang W.-S. et al. (2010) Lab. Chip, 10(23), 3296–3299. [DOI] [PubMed] [Google Scholar]
  • 75.Lee J.H., Kaplan J.B., and Lee W.Y. (2008) Biomed Microdevices, 10(4), 489–498. [DOI] [PubMed] [Google Scholar]
  • 76.Kaplan J.B., Ragunath C., Velliyagounder K., Fine D.H., and Ramasubbu N. (2004) Antimicrob. Agents Chemother., 48(7), 2633–2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Rupp C.J., Fux C.A., and Stoodley P. (2005) Appl. Environ. Microbiol., 71(4), 2175–2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Klapper I., Rupp C.J., Cargo R., Purvedorj B., and Stoodley P. (2002) Biotechnol. Bioeng., 80(3), 289–296. [DOI] [PubMed] [Google Scholar]
  • 79.Nauman E.A., Ott C.M., Sander E., Tucker D.L., Pierson D., Wilson J.W. et al. (2007) Appl. Environ. Microbiol., 73(3), 699–705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Purevdorj B., Costerton J.W., and Stoodley P. (2002) Appl. Environ. Microbiol., 68(9), 4457–4464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Stoodley P., Cargo R., Rupp C.J., Wilson S., and Klapper I. (2002) J. Ind. Microbiol. Biotechnol., 29(6), 361–367. [DOI] [PubMed] [Google Scholar]
  • 82.Shaw T., Winston M., Rupp C.J., Klapper I., and Stoodley P. (2004) Phys. Rev. Lett., 93(9), 098102. [DOI] [PubMed] [Google Scholar]
  • 83.Cense A.W., Peeters E.A., Gottenbos B., Baaijens F.P., Nuijs A.M., and van Dongen M.E. (2006) J. Microbiol. Meth., 67(3), 463–472. [DOI] [PubMed] [Google Scholar]
  • 84.Radmacher M. (2007) Method Cell. Biol., 83, 347–372. [DOI] [PubMed] [Google Scholar]
  • 85.Towler B.W., Rupp C.J., Cunningham A.B., and Stoodley P. (2003) Biofouling, 19(5), 279–285. [DOI] [PubMed] [Google Scholar]
  • 86.Coles B., Compton R.G., Booth J., Hong Q., and Sanders G.H.W. (1997) Chem. Commun., 619–620. [Google Scholar]
  • 87.Bowen W.R., Lovitt R.W., and Wright C.J. (2001) J. Colloid Interface Sci., 237(1), 54–61. [DOI] [PubMed] [Google Scholar]
  • 88.Li X., and Logan B.E. (2004) Langmuir, 20(20), 8817–8822. [DOI] [PubMed] [Google Scholar]
  • 89.Ahimou F., Semmens M.J., Novak P.J., and Haugstad G. (2007) Appl. Environ. Microbiol., 73(9), 2897–2904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Hohne D.N., Younger J.G., and Solomon M.J. (2009) Langmuir, 25(13), 7743–7751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Chaw K.C., Manimaran M., and Tay F.E. (2005) Antimicrob. Agents Chemother., 49(12), 4853–4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Musk D.J., Banko D.A., and Hergenrother P.J. (2005) Chem. Biol., 12(7), 789–796. [DOI] [PubMed] [Google Scholar]
  • 93.De Kievit T.R., Gillis R., Marx S., Brown C., and Iglewski B.H. (2001) Appl. Environ. Microbiol., 67(4), 1865–1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W., and Greenberg E.P. (1998) Science, 280(5361), 295–298. [DOI] [PubMed] [Google Scholar]
  • 95.Waite R.D., Paccanaro A., Papakonstantinopoulou A., Hurst J.M., Saqi M., Littler E. et al. (2006) BMC Genomics, 7, 162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Ryder C., Byrd M., and Wozniak D.J. (2007) Curr. Opin. Microbiol., 10(6), 644–648. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES