Skip to main content
Science Progress logoLink to Science Progress
. 2019 Feb 27;97(1):1–19. doi: 10.3184/003685014X13898980185076

Metal-based Drugs

Ruth J Mcquitty 1,
PMCID: PMC10365534  PMID: 24800466

Abstract

Metals have been considered for millennia to have medicinal values. With the advent of modern medicine, many metal-based drugs have proven to be highly effective in the clinic. Many different metal ions have shown activity against a range of diseases. The unique electronic structure of transition metals offers great versatility, not always seen in organic drugs, in terms of the ability to tune the properties of a given molecule. This review gives a brief overview of the most established therapeutic metals, and their more common applications, such as platinum-based anticancer drugs. New developments within the field of metallodrugs and novel strategies being employed to improve methods of delivery, are also discussed.

Keywords: metals in medicine, metallodrugs, metal-based drugs, drug delivery, targeting, photoactivation, photonic crystal fibres

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

References

  • 1.Weismann K. (1995) Sex. Trans. Dis., 1995, 22, 137–144. [DOI] [PubMed] [Google Scholar]
  • 2.Rosenberg B., Van camp L., and Krigas T. (1965) Nature, 205, 698–699. [DOI] [PubMed] [Google Scholar]
  • 3.Rosenberg B., Van camp L., Trosko L.E., and Mansour V.H. (1969) Nature, 222, 385–386. [DOI] [PubMed] [Google Scholar]
  • 4.Clement J.L., and Jarrett P.S. (1994) Met. Based. Drugs, 1, 467–482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Thomas S., and McCubbin P. (2003) J. Wound Care, 12, 101–107. [DOI] [PubMed] [Google Scholar]
  • 6.I.PM., Lui S.L., Poon V.K.M., Lung I., and Burd A. (2006) J. Med. Microbiol., 55, 59–63. [DOI] [PubMed] [Google Scholar]
  • 7.Taylor L., Phillips P., and Hastings R. (2009) J. Infect. Prev., 10, 6–12. [Google Scholar]
  • 8.Klueh U., Wagner V., Kelly S., Johnson A., and Bryers J.D. (2000) J. Biomed. Mat. Res., 53, 621–631. [DOI] [PubMed] [Google Scholar]
  • 9.Mirjalili M., Yaghmaei N., and Mirjalili M. (2013) J. Nanostruc. Chem., 3, 43–48. [Google Scholar]
  • 10.Martínez-Abad A., Sánchez G., Lagaron J.M., and Ocio M.J. (2013) Food Chem., 139, 281–288. [DOI] [PubMed] [Google Scholar]
  • 11.Melaiye A., Sun Z., Hindi K., Milsted A., Ely D., Reneker D.H., Tessier C.A., and Youngs W.J. (2005) J. Am. Chem. Soc., 127, 2285–2291. [DOI] [PubMed] [Google Scholar]
  • 12.Dallas P., Sharma V.K., and Zboril R. (2011) Adv. Colloid Interface Sci, 166, 119–135. [DOI] [PubMed] [Google Scholar]
  • 13.Balogh L., Swanson D.R., Tomalia D.A., Hagnauer G.L., and McManus A.T. (2001) Nano Lett., 1, 18–21. [Google Scholar]
  • 14.Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., and Mukherji S. (2008) Acta Biomater., 4, 707–716. [DOI] [PubMed] [Google Scholar]
  • 15.Chohan Z.H., Arif M., Akhtar A., and Supuran C.T. (2006) Bioinorg. Chem. Appl., 83131–83144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Rosu T., Negoiu M., Pasculescu S., Pahontu E., Poirier D., and Gulea A. (2010) Eur. J. Med. Chem., 45, 774–781. [DOI] [PubMed] [Google Scholar]
  • 17.Bolhuis A., Hand L., Marshall J.E., Richards A.D., Rodger A., and Aldrich-Wright J. (2011) Eur. J. Pharm. Sci., 42, 313–317. [DOI] [PubMed] [Google Scholar]
  • 18.Otero L., Noblia P., and Gambino D. (2003) Inorg. Chim. Acta, 344, 1–10. [Google Scholar]
  • 19.Navarro M., Pérez H., and Sánchez-Delgado R.A. (1997) J. Med. Chem., 40, 1937–1939. [DOI] [PubMed] [Google Scholar]
  • 20.Novelli F., Recine M., Sparatore F., and Juliano C. (1999) Farmacetica, 54, 232–236. [DOI] [PubMed] [Google Scholar]
  • 21.Guo Z., and Sadler P.J. (1999) Angew. Chem. Int. Ed., 38, 1512–1531. [DOI] [PubMed] [Google Scholar]
  • 22.Kim N.-H., Oh M.-K., Park H.J., and Kim I.-S. (2010) J. Pharmacol. Sci., 113, 246–254. [DOI] [PubMed] [Google Scholar]
  • 23.Albert A., Brauckmann C., Blaske F., Sperling M., Engelhard C., and Karst U. (2012) J. Anal. Atom. Spectrom., 27, 975–981. [Google Scholar]
  • 24.Messori L., Balerna A., Ascone I., Castellano C., Gabbiani C., Casini A. et al. (2011) J. Biol. Inorg. Chem., 16, 491–499. [DOI] [PubMed] [Google Scholar]
  • 25.Christodoulou J., Sadler P.J., and Tucker A. (1995) FEBS Lett., 376, 1–5. [DOI] [PubMed] [Google Scholar]
  • 26.Dhubhghaill O.M.N., Sadler P.J., and Tucker A. (1992) J. Am. Chem. Soc., 114, 1118–1120. [Google Scholar]
  • 27.Ilari A., Baiocco P., Messori L., Fiorillo A., Boffi A., Gramiccia M. et al. (2012) Amino Acids, 42, 803–811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Madeira J.M., Gibson D.L., Kean W.F., and Klegeris A. (2012) Inflammopharmacol., 20, 297–306. [DOI] [PubMed] [Google Scholar]
  • 29.Ge R., and Sun H. (2007) Acc. Chem. Res., 40, 267–274. [DOI] [PubMed] [Google Scholar]
  • 30.Cun S., Li H., Ge R., Lin M.C.M., and Sun H. (2008) J. Biol. Chem., 283, 15142–15151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ge R., Sun X., Gu Q., Watt R.M., Tanner J.A., Wong B.C.Y. et al. (2007) J. Biol. Inorg. Chem., 12, 831–842. [DOI] [PubMed] [Google Scholar]
  • 32.Tsang C.-N., Ho K.-S., Sun H., and Chan W.-T., (2011) J. Am. Chem. Soc., 133, 7355–7357. [DOI] [PubMed] [Google Scholar]
  • 33.Thompson K.H., McNeill J.H., and Orvig C. (1999) Chem. Rev., 99, 2561–2572. [DOI] [PubMed] [Google Scholar]
  • 34.Kahn C.R., and White M.F. (1988) J. Clin. Invest., 82, 1151–1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Yuen V.G., Orvig C., and McNeill J.H. (1995) Can. J. Phys. Pharmacol., 73, 55–64. [DOI] [PubMed] [Google Scholar]
  • 36.Rehder D., Costa Pessoa J., Geraldes C.F.G.C., Castro M.C.A., Kabanos T., Kiss T. et al. (2002) J. Biol. Inorg. Chem., 7, 384–396. [DOI] [PubMed] [Google Scholar]
  • 37.Gätjens J., Meier B., Kiss T., Nagy E.M., Buglyó P., Sakurai H., Kawabe K., and Rehder D. (2003) Chem. Eur. J., 9, 4924–4935. [DOI] [PubMed] [Google Scholar]
  • 38.Arnold W.P., Longnecker D.E., and Epstein R.M. (1984) Anesthesiology, 61, 254–260. [DOI] [PubMed] [Google Scholar]
  • 39.Butler A.R., and Glidewell C. (1987) Chem. Soc. Rev., 16, 361–380. [Google Scholar]
  • 40.Shishido S.M., and de Oliveira M.G. (2001) Prog. React. Kinet. Mech., 26, 239–261. [Google Scholar]
  • 41.Zanichelli P.G., Miotto A.M., Estrela H.F.G., Soares F.R., Grassi-Kassisse D.M., Spadari-Bratfisch R.C. et al. (2004) J. Bio. Inorg. Chem., 98, 1921–1932. [DOI] [PubMed] [Google Scholar]
  • 42.Marcondes F.G., Ferro A.A., SouzaTorsoni A., Sumitani M., Clarke M.J., Franco D.W. et al. (2002) Life Sci., 70, 2735–2752. [DOI] [PubMed] [Google Scholar]
  • 43.Wang Y., Legzdins P., Poon J., and Pang C. (2000) J. Cardiovas. Pharmacol., 35, 73–77. [DOI] [PubMed] [Google Scholar]
  • 44.Zoroddu M.A., Medici S., and Peana M. (2009) J. Coord. Chem., 62, 3828–3836. [Google Scholar]
  • 45.Ziche M., Donnini S., Morbidelli L., Monzani E., Roncone R., Gabbini R., and Casella L. (2008) ChemMedChem, 3, 1039–1047. [DOI] [PubMed] [Google Scholar]
  • 46.Reglinski J., Butler A.R., and Glidewell C. (1994) Appl. Organomet. Chem., 8, 25–31. [Google Scholar]
  • 47.Yan G.-P., Robinson L., and Hogg P. (2007) Radiography, 13, e5–e19. [Google Scholar]
  • 48.FDA drug data–Platinol, http://www.accessdata.fda._docs/label/2010/018057s.
  • 49.Eastman A. (1986) Biochemistry, 25, 3912–3915. [DOI] [PubMed] [Google Scholar]
  • 50.Sletten N.A.F.E. (2009) Metal complex-DNA interactions. John Wiley & Sons, Chichester, UK. [Google Scholar]
  • 51.Reedijk J. (1999) Chem. Rev., 99, 2499–2510. [DOI] [PubMed] [Google Scholar]
  • 52.Takahara P., Rosenzweig A., Frederick C., and Lippard S. (1995) Nature, 377, 6477–6487. [DOI] [PubMed] [Google Scholar]
  • 53.Zlatanova J., Yaneva J., and Leuba S.H. (1998) FASEB J., 12, 791–799. [DOI] [PubMed] [Google Scholar]
  • 54.Reedijk J. (2009) Eur. J. Inorg. Chem., 1303–1312. [Google Scholar]
  • 55.Ohndorf U.M., Rould M.A., He Q., Pabo C.O., and Lippard S.J. (1999) Nature, 399, 708–712. [DOI] [PubMed] [Google Scholar]
  • 56.Wang D., and Lippard S.J. (2005) Nat. Rev. Drug Discov., 4, 307–320. [DOI] [PubMed] [Google Scholar]
  • 57.Ishida S., Lee J., Thiele D.J., and Herskowitz I. (2002) Proc. Nat. Acad. Sci., 99, 14298–14302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Wang X., Du X., Li H., Chan D.S.-B., and Sun H. (2011) Angew. Chem. Int. Ed., 50, 2706–2711. [DOI] [PubMed] [Google Scholar]
  • 59.Arnesano F., and Natile G. (2009) Coord. Chem. Rev., 253, 2070–2081. [Google Scholar]
  • 60.Köberle B., Tomicic M.T., Usanova S., and Kaina B. (2010) Biochim. Biophys. Acta, 1806, 172–182. [DOI] [PubMed] [Google Scholar]
  • 61.Boulikas T., Pantos A., Bellis E., and Christofis P. (2007) Cancer Ther., 5, 537–583. [Google Scholar]
  • 62.Nannizzi S., Veal G.J., Giovannetti E., Mey V., Ricciardi S., Ottley C.J. et al. (2010) Cancer Chemother. Pharmacol., 66, 547–558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Kelland L. (2007) Nat. Rev. Cancer, 7, 573–584. [DOI] [PubMed] [Google Scholar]
  • 64.Spingler B., Whittington D.A., and Lippard S.J. (2001) Inorg. Chem., 40, 5596–5602. [DOI] [PubMed] [Google Scholar]
  • 65.Misset J.L. (1998) Brit. J. Cancer, 77 Suppl 4, 4–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Kasparkova J., Vojtiskova M., Natile G., and Brabec V. (2008) Chem. Eur. J., 14, 1330–1341. [DOI] [PubMed] [Google Scholar]
  • 67.Wu Y., Bhattacharyya D., King C.L., Baskerville-Abraham I., Huh S., Boysen G. et al. (2007) Biochemistry, 46, 6477–6487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Chaney S.G., Campbell S.L., Bassett E., and Wu Y. (2005) Crit. Rev. Oncol. Hematol., 53, 3–11. [DOI] [PubMed] [Google Scholar]
  • 69.Tang C.-H., Parham C., Shocron E., McMahon G., and Patel N. (2011) Cancer Chemother. Pharmacol., 67, 1389–1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Pérez J.M., Fuertes M.A., Alonso C., and Navarro-Ranninger C. (2000) Crit. Rev. Oncol. Hematol., 35, 109–120. [DOI] [PubMed] [Google Scholar]
  • 71.Dalbiès R., Payet D., and Leng M. (1994) Proc. Natl. Acad. Sci. USA, 91, 8147–8151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Paquet F., Boudvillain M., Lancelot G., and Leng M. (1999) Nucleic Acids Res., 27, 4261–4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Boudvillain M., Dalbiès R., Aussourd C., and Leng M. (1995) Nucleic Acids Res., 23, 2381–2388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Farrell N., Kelland L., Roberts J., and Van Beusichem M. (1992) Cancer Res., 52, 5065–5072. [PubMed] [Google Scholar]
  • 75.Farrell N.P.J.N., Ha T.T.B., Souchard J.-P., Wimmer F.L., Cros S. (1989) J. Med. Chem., 32, 2240–2241. [DOI] [PubMed] [Google Scholar]
  • 76.Banerjee T., Dubey P., and Mukhopadhyay R. (2012) Biochimie, 94, 494–502. [DOI] [PubMed] [Google Scholar]
  • 77.Zerzankova L., Suchankova T., Vrana O., Farrell N.P., Brabec V., and Kasparkova J. (2010) Biochem. Pharmacol., 79, 112–121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Kasparkova J., Farrell N., and Brabec V. (2000) J. Biol. Chem., 275, 15789–15798. [DOI] [PubMed] [Google Scholar]
  • 79.Ruhayel R.A., Berners-Price S.J., and Farrell N.P. (2013) Dalton Trans., 42, 3181–3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Butler J.S., and Sadler P.J. (2013) Curr. Opin. Chem. Biol., 17, 175–188. [DOI] [PubMed] [Google Scholar]
  • 81.Wang X., and Guo Z. (2013) Chem. Soc. Rev., 42, 202–224. [DOI] [PubMed] [Google Scholar]
  • 82.Sun R.W.-Y., Ma D.-L., Wong E.L.-M., and Che C.-M. (2007) Dalton Trans., 4884–4892. [DOI] [PubMed] [Google Scholar]
  • 83.Barragán F., Moreno V., and Marchán V. (2009) Chem. Comm., 4705–4707. [DOI] [PubMed] [Google Scholar]
  • 84.Ndinguri M.W., Solipuram R., Gambrell R.P., Aggarwal S., and Hammer R.P. (2009) Bioconj. Chem., 20, 1869–1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Cardo L., and Hannon M.J. (2009) Inorg. Chim. Acta., 362, 784–792. [Google Scholar]
  • 86.Li J., Yap S.Q., Chin C.F., Tian Q., Yoong S.L., Pastorin G., and Ang W.H. (2012) Chem. Sci., 3, 2083–2087. [Google Scholar]
  • 87.Della Rocca J., Huxford R.C., Comstock-Duggan E., and Lin W. (2011) Angew. Chem. Int. Ed., 50, 10330–10334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Dhar S., and Lippard S.J. (2009) Proc. Natl. Acad. Sci. USA, 106, 22199–22204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Abderrezak A., Bourassa P., Mandeville J.-S., Sedaghat-Herati R., and Tajmir-Riahi H.-A. (2012) PLoS One, 7, e33102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Tippayamontri T., Kotb R., Paquette B., and Sanche L. (2011) Invest. New Drugs, 29, 1321–1327. [DOI] [PubMed] [Google Scholar]
  • 91.Hambley T.W. (2008) Aust. J. Chem., 61, 647–653. [Google Scholar]
  • 92.Hall M., and Hambley T. (2002) Coord. Chem. Rev., 232, 49–67. [Google Scholar]
  • 93.Hall M.D., Mellor H.R., Callaghan R., and Hambley T.W. (2007) J. Med. Chem., 50, 3403–3411. [DOI] [PubMed] [Google Scholar]
  • 94.Reithofer M.R., Valiahdi S.M., Jakupec M.A., Arion V.B., Egger A., Galanski M., and Keppler B.K. (2007) J. Med. Chem., 50, 6692–6699. [DOI] [PubMed] [Google Scholar]
  • 95.Sternberg C.N., Petrylak D.P., Sartor O., Witjes J.A., Demkow T., Ferrero J.-M. et al. (2009) J. Clin. Oncol., 27, 5431–5438. [DOI] [PubMed] [Google Scholar]
  • 96.Hartwig J.F., and Lippard S.J. (1992) J. Am. Chem. Soc., 114, 5646–5654. [Google Scholar]
  • 97.Wei M., Cohen S.M., Silverman A.P., and Lippard S.J. (2001) J. Biol. Chem., 276, 38774–38780. [DOI] [PubMed] [Google Scholar]
  • 98.Pendyala L., Arakali A.V., Sansone P., Cowens J.W., and Creaven P.J. (1990) Cancer Chemother. Pharmacol., 27, 248–250. [DOI] [PubMed] [Google Scholar]
  • 99.Roat R., and Reedijk J. (1993) J. Inorg. Biochem., 214, 263–274. [Google Scholar]
  • 100.Silverman A.P., Bu W., Cohen S.M., and Lippard S.J. (2002) J. Biol. Chem., 277, 49743–49749. [DOI] [PubMed] [Google Scholar]
  • 101.Nováková O., Vrána O., Kiseleva V.I., and Brabec V. (1995) Eur. J. Biochem, 228, 616–624. [DOI] [PubMed] [Google Scholar]
  • 102.Kratochwil N.A., Bednarski P.J., Mrozek H., Vogler A., and Nagle J.K. (1996) Anti-Cancer Drug Des., 11, 155–171. [PubMed] [Google Scholar]
  • 103.Kratochwil N.A., Zabel M., Range K.J., and Bednarski P.J. (1996) J. Med. Chem., 39, 2499–2507. [DOI] [PubMed] [Google Scholar]
  • 104.Ellis L., Er H., and Hambley T. (1995) Aust. J. Chem., 48, 793–806. [Google Scholar]
  • 105.Berners-Price S.J. (2011) Angew. Chem. Int. Ed., 50, 804–805. [DOI] [PubMed] [Google Scholar]
  • 106.Kratochwil N.A., Parkinson J.A., Bednarski P.J., and Sadler P.J. (1999) Angew. Chem. Int. Ed., 38, 1460–1463. [DOI] [PubMed] [Google Scholar]
  • 107.Müller P., and Schröder B. (2003) Angew. Chem. Int. Ed., 42, 335–339. [DOI] [PubMed] [Google Scholar]
  • 108.Mackay F.S., Farrer N.J., Salassa L., Tai H.-C., Deeth R.J., Moggach S.A. et al. (2009) Dalton Trans., 2009, 2315–2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Mackay F.S., Moggach S.A., Collins A., Parsons S., and Sadler P.J. (2009) Inorg. Chim. Acta., 362, 811–819. [Google Scholar]
  • 110.Mackay F.S., Woods J.A., Heringová P., Kaspárková J., Pizarro A.M., Moggach S.A. et al. (2007) Proc. Natl. Acad. Sci. USA, 104, 20743–20748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Butler J.S., Woods J.A., Farrer N.J., Newton M.E., and Sadler P.J. (2012) J. Am. Chem. Soc., 134, 16508–16511. [DOI] [PubMed] [Google Scholar]
  • 112.Allison R.R., and Sibata C.H. (2010) Photodiagnosis Photodyn. Ther., 7, 61–75. [DOI] [PubMed] [Google Scholar]
  • 113.Robertson C.A., Evans D.H., and Abrahamse H. (2009) J. Photochem. Photobiol. B, 96, 1–8. [DOI] [PubMed] [Google Scholar]
  • 114.Tian Y., Wang L., and Wang W. (2008) Laser Phys., 18, 1119–1123. [Google Scholar]
  • 115.Yoon I., Li J.Z., and Shim Y.K. (2013) Clini. Endosc., 46, 7–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Balaz M., Collins H.A., Dahlstedt E., and Anderson H.L. (2009) Org. Biomol. Chem., 7, 874–888. [DOI] [PubMed] [Google Scholar]
  • 117.Knight J., Birks T., and Cregan R. (1999) Opt. Mat., 11, 143–151. [Google Scholar]
  • 118.Knight J.C. (1998) Science, 282, 1476–1478. [DOI] [PubMed] [Google Scholar]
  • 119.Russell P. (2003) Science, 299, 358–362. [DOI] [PubMed] [Google Scholar]
  • 120.Cubillas A.M., Unterkofler S., Euser T.G., Etzold B.J.M., Jones A.C., Sadler P.J. et al. (2013) Chem. Soc. Rev., 42, 8629–8648. [DOI] [PubMed] [Google Scholar]
  • 121.Chen J.S.Y., Euser T.G., Farrer N.J., Sadler P.J., Scharrer M., and Russell P.S.J. (2010) Chem. Eur. J., 16, 5607–5612. [DOI] [PubMed] [Google Scholar]
  • 122.van Rijt S.H., and Sadler P.J. (2009) Drug Discov. Today, 14, 1089–1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Kelman H.J.P.A.D., Clarke M.J., Edmonds S.D. (1977) J. Clin. Hematol. Oncol., 7, 274–288. [Google Scholar]
  • 124.Süss-Fink G. (2010) Dalton Trans., 39, 1673–1688. [DOI] [PubMed] [Google Scholar]
  • 125.Alessio E., and Mestroni G. (2004) Curr. Top. Med. Chem., 4, 1525–1535. [DOI] [PubMed] [Google Scholar]
  • 126.Garzon F., and Berger M. (1987) Cancer Chemother. Pharmacol., 347–349. [DOI] [PubMed] [Google Scholar]
  • 127.Ang W.H., Casini A., Sava G., and Dyson P.J. (2011) J. Organomet. Chem., 696, 989–998. [Google Scholar]
  • 128.Dougan S., and Sadler P. (2007) Chimia., 61, 704–715. [Google Scholar]
  • 129.Ang W.H., Daldini E., Scolaro C., Scopelliti R., Juillerat-Jeannerat L., and Dyson P.J. (2006) Inorg. Chem., 45, 9006–9013. [DOI] [PubMed] [Google Scholar]
  • 130.Dougan S.J., Melchart M., Habtemariam A., Parsons S., and Sadler P.J. (2006) Inorg. Chem., 45, 10882–10894. [DOI] [PubMed] [Google Scholar]
  • 131.Wang F., Bella J., Parkinson J.A., and Sadler P.J. (2005) J. Biol. Inorg. Chem., 10, 147–155. [DOI] [PubMed] [Google Scholar]
  • 132.Pizarro A.M., and Sadler P.J. (2009) Biochimie, 91, 1198–1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Romero-Canelón I., Salassa L., and Sadler P.J. (2013) J. Med. Chem., 56, 1291–1300. [DOI] [PubMed] [Google Scholar]
  • 134.Melchart M., Habtemariam A., Parsons S., and Sadler P.J. (2007) J. Inorg. Biochem., 101, 1903–1912. [DOI] [PubMed] [Google Scholar]
  • 135.Fu Y., Habtemariam A., Pizarro A.M., van Rijt S.H., Healey D.J., Cooper P.A., Shnyder S.D. et al. (2010) J. Med. Chem., 53, 8192–8196. [DOI] [PubMed] [Google Scholar]
  • 136.van Rijt S.H., Mukherjee A., Pizarro A.M., and Sadler P.J. (2010) J. Med. Chem., 53, 840–849. [DOI] [PubMed] [Google Scholar]
  • 137.Van Rijt S.H., Kostrhunova H., Brabec V., and Sadler P.J. (2011) Bioconj. Chem., 22, 218–226. [DOI] [PubMed] [Google Scholar]
  • 138.Shnyder S.D., Fu Y., Habtemariam A., van Rijt S.H., Cooper P.A., Loadman P.M., and Sadler P.J. (2011) MedChemComm, 2, 666–668. [Google Scholar]
  • 139.Liu Z., Salassa L., Habtemariam A., Pizarro A.M., Clarkson G.J., and Sadler P.J. (2011) Inorg. Chem., 50, 5777–5783. [DOI] [PubMed] [Google Scholar]
  • 140.Liu Z., Habtemariam A., Pizarro A.M., Fletcher S.A., Kisova A., Vrana O. et al. (2011) J. Med. Chem., 54, 3011–3026. [DOI] [PubMed] [Google Scholar]
  • 141.Liu Z., Deeth R.J., Butler J.S., Habtemariam A., Newton M.E., and Sadler P.J. (2013) Angew. Chem. Int. Ed., 52, 4194–4197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Betanzos-Lara S., Liu Z., Habtemariam A., Pizarro A.M., Qamar B., and Sadler P.J. (2012) Angew. Chem. Int. Ed., 51, 3897–3900. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES