Skip to main content
Science Progress logoLink to Science Progress
. 2012 Jun 2;95(2):199–205. doi: 10.3184/003685012X13361526995348

Telomeres and Telomerase: The Commitment Theory of Cellular Ageing Revisited

Robin Holliday 1,
PMCID: PMC10365536  PMID: 22893980

Abstract

It is not always realised that separate fibroblast populations of the same strain have very different lifespans, that is, over a million-fold range. This is best documented for human strains WI-38 and MRC-5. There is evidence that it is the molecular clock of telomere shortening which determines the growth potential of these cells. However, if a clock is set and runs its course one would expect parallel cultures to have similar lifespans. The commitment theory of fibroblast ageing proposes that commitment occurs during early cell divisions with a given probability, and after that there is then a constant number of divisions until growth ceases. This constant number could be determined by the gradual loss of telomeres. The stochastic feature of the theory is the probability of the loss of the last uncommitted cells or the youngest committed cells. These cells have the longest lifespan and will give rise to the final population.

Keywords: telomeres, telomerase, fibroblasts, lifespan, ageing

Full Text

The Full Text of this article is available as a PDF (253.7 KB).

References

  • 1.Watson J.D. (1972) Nature New Biol., 239, 197–201. [DOI] [PubMed] [Google Scholar]
  • 2.Olovnikov A.M. (1973) J Theoret Biol., 41, 181–190. [DOI] [PubMed] [Google Scholar]
  • 3.Hayflick L. (1965) Exp Cell Res., 37, 614–636. [DOI] [PubMed] [Google Scholar]
  • 4.Hayflick L., and Moorhead P.S. (1961) Exp Cell Res., 2, 585–621. [DOI] [PubMed] [Google Scholar]
  • 5.Hayflick L (1996) How and why we age, 2nd edn. Ballantyne Books, New York. [Google Scholar]
  • 6.Harley C.B., Futcher A.B., and Greider C.W. (1990) Nature, 345, 458–460. [DOI] [PubMed] [Google Scholar]
  • 7.Reddel R. (1998) BioEssays, 20, 977–984. [DOI] [PubMed] [Google Scholar]
  • 8.Blackburn E. (2000) Nature, 408, 53–36. [DOI] [PubMed] [Google Scholar]
  • 9.Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C-P., Morin G.B., Harley C.B., Shay J.W., Lichsteiner S., and Wright W.E. (1998) Science, 279, 349–352. [DOI] [PubMed] [Google Scholar]
  • 10.Vasiri H., and Benchimol S. (1998) Curr. Biol., 8, 279–282. [DOI] [PubMed] [Google Scholar]
  • 11.Bryan T.M., and Reddel R.R. (1997) Eur. J. Cancer, 33, 767–773. [DOI] [PubMed] [Google Scholar]
  • 12.Kirkwood T.B.L., and Holliday R. (1973) J. Theoret. Biol., 53, 481–496. [DOI] [PubMed] [Google Scholar]
  • 13.Holliday R., Huschtscha L.I., Tarrant G.L., and Kirkwood T.B.L. (1977) Science, 198, 366–372. [DOI] [PubMed] [Google Scholar]
  • 14.Holliday R., Huschtscha L.I., and Kirkwood T.B.L. (1981) Science, 213, 1505–1508. [DOI] [PubMed] [Google Scholar]
  • 15.Finch C.E., and Kirkwood T.B.L. (2000) Chance, development and ageing. Oxford University Press, Oxford. [Google Scholar]
  • 16.Zavala C., Herner G., and Fialkow P.F. (1978) Exp. Cell. Res., 117, 137–144. [DOI] [PubMed] [Google Scholar]
  • 17.McCarron M., Osborne Y., Storey C.J., Dempsey J.L., Turner D.R., and Morley A.A. (1987) Mech. Age. Dev., 41, 211–218. [DOI] [PubMed] [Google Scholar]
  • 18.Sozou P.D., and Kirkwood T.B.L. (2001) J. Theoret. Biol., 213, 573–586. [DOI] [PubMed] [Google Scholar]
  • 19.Martin-Ruiz C., Saretzki G., Petrie J., Ladhoff J., Jeyapalan J., Wei W., Sedivy J., and von Zglinicki T. (2004) J. Biol. Chem., 279, 17826–17833. [DOI] [PubMed] [Google Scholar]
  • 20.Passos J.F., Saretski G., Ahmed S., Nelson G., Richter T., Peters H., WappleBirket MJ, Harold G, Schlaeuble K, Birch-Machin M.A., Kirkwood T.B.L., and von Zglinicki T. (2007) PLoS, 5, 1138–1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Lawless C., Wang C., Jurk D., Meiz A., von Zglinicki T., and Passos J.F. (2010) Exp. Geront. 45, 772–778. [DOI] [PubMed] [Google Scholar]
  • 22.Macieiro-Coelho A. (2011) Biogerontology, 12, 503–515. [DOI] [PubMed] [Google Scholar]
  • 23.Smith J.R., and Whitney R.G. (1980) Science, 207, 82–84. [DOI] [PubMed] [Google Scholar]
  • 24.Holliday R. (2001) In: Marshak D.R., Gardner R.L., and Gottlieb D. (eds) Stem cell biology, pp 95–109. Cold Spring Harbor Laboratory Press, New York. [Google Scholar]
  • 25.Wilson V.L., and Jones P.A. (1983) Science, 220, 1055–1057. [DOI] [PubMed] [Google Scholar]
  • 26.Holliday R. (1986) Exp. Cell Res., 166, 543–552. [DOI] [PubMed] [Google Scholar]
  • 27.Fairweather D.S., Fox M., and Margison G.P. (1987) Exp. Cell Res., 168, 153–159. [DOI] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES