Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2023 Jul 20;43(7):1194–1203. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2023.07.16

改良的四血管间断阻塞法制作大鼠全脑缺血再灌注损伤模型

An improved 4-vessel intermittent occlusion method for establishing rat models of global cerebral ischemia-reperfusion injury

Wei SUN 1,2, Ping CHEN 2,2, Xiaohang TANG 1, Yingmin GU 1, Xuesong TIAN 2,*
PMCID: PMC10366505  PMID: 37488802

Abstract

Objective

To improve the classical 4-vessel occlusion (4VO) model established by Pulsinelli and Brierley.

Methods

Thirty-two male SD rats were randomized into sham operation group, I4VO-Con10 group, I4VO-Int10 group and I4VO-Int15 group. The sham surgery group underwent exposure of the bilateral vertebral arteries and carotid arteries without occlusion to block blood flow. The I4VO-Con10 group experienced continuous ischemia by occluding the bilateral vertebral arteries and carotid arteries for 10 minutes followed by reperfusion for 24 hours. The I4VO-Int10 and I4VO-Int15 groups were subjected to intermittent ischemia. The I4VO- Int10 group underwent 5 minutes of ischemia, followed by 5 minutes of reperfusion and another 5 minutes of ischemia, and then reperfusion for 24 hours. The I4VO-Int15 group experienced 5 minutes of ischemia followed by two cycles of 5 minutes of reperfusion and 5 minutes of ischemia, and then reperfusion for 24 hours. The regional cerebral blood flow (rCBF) was monitored with laser Doppler scanning, and survival of the rats was observed. HE staining was used to observe hippocampal pathologies to determine the optimal method for modeling. Another 48 rats were randomized into 6 groups, including a sham operation group and 5 model groups established using the optimal method. The 5 I4VO model groups were further divided based on the reperfusion time points (1, 3, 7, 14, and 28 days) into I4VO-D1, I4VO-D3, I4VO-D7, I4VO- D14, and I4VO- D28 groups. Body weight changes and survival of the rats were recorded. HE staining was used to observe morphological changes in the hippocampal, retinal and optic tract tissues. The Y-maze test and light/dark box test were used to evaluate cognitive and visual functions of the rats in I4VO-D28 group.

Results

Occlusion for 5 min for 3 times at the interval of 5 min was the optimal method for 4VO modeling. In the latter 48 rats, the body weight was significantly lower than that of the sham-operated rats at 1, 3, 7, 14 and 28 days after modeling without significant difference in survival rate among the groups. The rats with intermittent vessel occlusion exhibited progressive deterioration of hippocampal neuronal injury and neuronal loss. Cognitive impairment was observed in the rats in I4VO-D28 group, but no obvious ischemic injury of the retina or the optic tract was detected.

Conclusion

The improved 4VO model can successfully mimic the main pathological processes of global cerebral ischemia-reperfusion injury without causing visual impairment in rats.

Keywords: 4-vessel occlusion, global cerebral ischemia-reperfusion injury, animal model, rats


全脑缺血再灌注(GCI/R)损伤是一种严重的病理损伤过程,常见于心脏骤停、窒息、休克、严重心律失常等临床紧急情况,最终诱发神经元损伤,是患者死亡和长期神经功能障碍的主要原因[1, 2]。GCI/R的潜在机制涉及细胞能量衰竭、氧化应激、钙超载、血脑屏障损伤、炎症反应、线粒体功能障碍等[3, 4]。抑制上述病理反应是治疗GCI/R损伤的关键,但当前研究尚未完全揭示其更深层次的病理机制,临床应用中仍缺乏积极有效的治疗手段[5]

稳定、可靠的动物模型是深入研究GCI/R损伤的基础与关键,对进一步阐明GCI/R损伤的发病机制及临床防治至关重要。Pulsinelli与Brierley于1979年建立的四血管阻断(4VO)法是国际公认的GCI/R损伤经典动物模型。主要步骤为:暴露双侧颈总动脉及第一颈椎双侧翼孔,穿过翼孔电灼、永久闭塞双侧椎动脉,24 h时再夹闭双侧颈总动脉30 min[6, 7]。该方法对GCI/R损伤的研究贡献巨大,但也存在明显的技术缺点:(1)在非直视条件下,电凝颈椎横突翼孔阻断双侧椎动脉,因视野受限降低模型稳定性,易造成与GCI/R无关的神经损伤;(2)采用单极电凝烧灼椎动脉,电流不易控制,电流过低导致椎动脉闭塞不全,电流过高易损伤脑干、颈丛神经,引起大出血;(3)动物腹背双侧手术创伤大,增加感染风险,动物死亡率高[8];(4)阻断椎动脉24 h时夹闭颈总动脉,进行二次手术的同时延长实验周期,且在24 h间隔内可能导致侧支循环的发展与预处理效应[9]

针对难以确定椎动脉是否电凝完全这一问题,Pulsinelli[8]后续提供了解决方案,通过显微镜下能否观察到椎动脉通过的骨管隧道的外缘以确保椎动脉的完全闭塞。但是,这无疑增加了模型建立的复杂性。为提高模型的成功率与稳定性,促使了大鼠4VO改良模型的开发。Todd等[10]采用钻透寰椎翼孔的方法,充分暴露椎动脉后直视下烧灼椎动脉。但这种手术入路侵入性强,损伤颈椎,翼孔壁薄易伤及椎动脉造成大出血,死亡率相对较高。Sugio等[11, 12]提出第1颈椎与第2颈椎横突间椎动脉可视,可完全电灼。基于这一解剖基础,Toda、Lu等[13, 14]上暴露并电灼Wistar、SD大鼠寰椎关节外第1和第2横突之间的椎动脉,24 h时夹闭双侧颈总动脉,成功建立GCI/R模型。此外,笔者前期已于颈前结扎双侧椎动脉,24 h时夹闭双侧颈总动脉为改良方法建立改良的GCI/R模型[1]。解决了不可视情况下闭塞椎动脉这一主要难题,但仍面临二次手术及24 h间隔的缺点。总之,虽然国内外学者不断对GCI/R模型进行有益探索,试图使模型的制备日趋完善,但仍存在亟待解决的缺点。

本研究对传统经典4VO模型进行改良,拟建立一种改良四血管阻塞(I4VO)模型,并将缺血后处理(IPostC)与I4VO模型相结合,以进一步提高造模的成功率与可操作性,有助于加深对GCI/R发病机制的研究。

1. 材料和方法

1.1. 动物

健康SPF级SD雄性大鼠80只,购于北京维通利华实验动物技术有限公司,实验动物生产许可证号:SCXK(京)2016-0011,体质量为300~350 g。动物实验方案遵循上海中医药大学实验动物伦理委员会标准(批准号:PZSHUTCM200731001)。动物饲养于上海中医药大学动物实验中心SPF级动物饲养室内,使用许可证号:SYXK(沪)2020-0009,饲养期间各组大鼠自由摄食摄水。饲养环境:温度为23±1 ℃,相对湿度为40%~ 70%,昼夜各半循环照明。

1.2. 主要试剂与仪器

1%碘酊(中国上海上海怡沣实业有限公司;异氟烷(河北一品制药股份有限公司);舒泰-50(法国维克),生理盐水配成5 mg/mL的溶液;青霉素钠(华北制药股份有限公司)使用前用生理盐水配成80000 IU/mL溶液。

手术显微镜(Olympus);光学显微镜(CX41);智能数字测温仪(AT320,上海玉研科学仪器有限公司);吸入式小动物麻醉剂(Hsiv-μ1,上海瑞曼信息科技有限公司);恒温垫(GP40-B,PETFUN);电动骨钻(STRONG204,SaeShin);激光多普勒血流仪(Moor instruments);LDF探针(直径1.5 mm;Moor);Y迷宫(DigBehv-YM,上海吉量软件科技有限公司);明暗箱(DigBehv-ST,上海吉量软件科技有限公司)。

1.3. 动物分组

健康成年雄性SD大鼠80只。首先,为确定IPostC条件,32只大鼠随机分为4个实验组(n=8),包括假手术组(暴露椎动脉与颈总动脉但不阻断其血流)、I4VO-Con10组(1次10min持续缺血、之后行再灌注)、I4VO-Int10组(2次5 min间断缺血,中间隔5 min的再灌注、之后行再灌注)、I4VO-Int15组(3次5 min间断缺血,中间隔2次5min再灌注、之后行再灌注)。在确定IPostC条件的基础上,对I4VO模型进行评估,将48只大鼠随机分为假手术组和5个I4VO模型组(n=8);I4VO模型组根据再灌注1、3、7、14、28 d,分为I4VO-D1、I4VO-D3、I4VO-D7、I4VO-D14和I4VO-D28组(图 1)。

图 1.

图 1

动物分组示意图

Animal grouping protocol.

1.4. 术前准备

4.0%异氟烷(95% O2+5% N2,4 L/min)诱导麻醉后仰卧位固定于放置恒温垫的手术板上,2%异氟烷气体维持麻醉,颈部剃毛后1% 碘酊溶液消毒手术区域,75% 乙醇脱碘,测温仪监测直肠温度,体温维持在36.5± 0.5 ℃。

1.5. 建立I4VO模型

暴露第1颈椎与第2颈椎间隙穿过的椎动脉,分离双侧颈总动脉。在可视情况下使用显微血管夹夹闭双侧椎动脉、双侧颈总动脉。在闭塞5 min后,取出微血管夹恢复血流(共闭塞3次)。从而实现四血管的全阻断与全灌注(图 2)。

图 2.

图 2

I4VO模型操作示意图

Procedures of 4-vessel occlusion in rats. A: Schematic illustration of the I4VO model. B: Overall view of the 4 arteries with red latex injection (a: VA blocking point; b: CCA blocking point). C: Dissociation of the longus colli. D: Thyroid opposites C1 and C2. E: Exposure of the bilateral vertebral arteries. F: Clamping of the bilateral vertebral arteries. ICA: Internal carotid artery; ECA: External carotid artery; RCCA: Right common carotid artery; LCCA: Left common carotid artery; RVA: Right vertebral artery; LVA: Light vertebral artery; BT: Brachiocephalic trunk; LSA: Left subclavian artery. C1: Atlas; C2: Epistropheus; VA: Vertebral artery; CCA: Common carotid artery; SA: Subclavian artery.

1.5.1. 分离双侧颈总动脉

沿颈前正中线,从胸骨上窝上缘向上做一纵向2~3 cm切口,钝性分离皮下组织,用玻璃分针小心分离动脉鞘游离双侧颈总动脉,避免过分牵拉血管损伤迷走神经,置双股2-0号手术缝合线于颈总动脉并系活结作为标志备用(图 2B)。

1.5.2. 暴露双侧椎动脉

分离胸骨舌骨肌,充分暴露出气管及两侧的颈部颈长肌(图 2C),自甲状腺平齐位置向下钝性分离颈部颈长肌(图 2D),暴露出自第1颈椎与第2颈椎之间穿行的椎动脉(图 2E)。

1.5.3. 缺血与再灌注

异氟烷浓度调节至0.5%维持麻醉,待大鼠恢复至有轻微痛觉感受,用显微血管夹夹闭双侧椎动脉(图 2F),使用显微血管夹夹闭双侧的颈总动脉(图 2B),阻断大鼠脑部供血。大鼠自主呼吸加快加深,痛觉刺激反应消失,眼球呈灰白色,成功建立I4VO模型。I4VO-Con10组持续缺血10 min后,取出微血管夹恢复血流。I4VO-Int10组夹闭塞四根血管5 min,松开动脉夹恢复血流供应5 min,再闭塞血管5 min后松开所有微血管夹进行再灌注。I4VO-Int15组,先缺血5 min、再进行2次5 min/5 min的再灌注/缺血循环,最后一次缺血完成后除去椎动脉、颈总动脉的动脉夹,此为再灌注期。假手术组接受相同的手术,但不进行血管的闭塞。手术完毕后逐层缝合伤口,1% 碘伏消毒伤口并肌肉注射青霉素钠(60000 IU/kg,i.m.)抗炎,置于保温箱内待动物完全清醒后放回饲养笼内饲养。

1.6. 激光多普勒血流监测

激光多普勒监测局部脑血流量(rCBF)。大鼠麻醉后俯卧位固定于手术板。从颞肌与顶骨交界处起,用手术刀纵切1.5 cm。使用电动骨钻在右半球前囟后侧1.0 mm和外侧4.5 mm处打磨约1.5 mm直径的骨窗。在钻孔部位滴入适量生理盐水(0.9%,27 ℃)防止大脑皮层热损伤。切开硬脑膜,固定LDF的探头于右侧颅骨骨窗。观察每组大鼠缺血前5min、缺血中、缺血后处理中及完全再灌注后5 min脑血流灌注的变化情况。应用moorSOFT/moorLAB 2.01软件分析脑血流量变化值。以缺血前稳态5min记录的rCBF平均水平为100%。rCBF的值以相对于基线的百分比表示。约80% rCBF较基线降低,可确定为4根血管几乎完全阻塞[15]

1.7. HE染色观察海马组织病理学变化

腹腔注射舒泰-50(5 mg/kg)深度麻醉大鼠。仰卧位固定,开胸暴露心脏,穿刺针从左心室插入升主动脉,剪开右心耳放血,快速灌注0.9%氯化钠注射液200 mL,至右心耳流出无色液体时再缓慢灌注4 ℃含4%多聚甲醛的0.1 mol/L的磷酸盐缓冲液(pH 7.4)200 mL。开颅取全脑置40 g·L-1多聚甲醛中固定1周。经梯度乙醇脱水、二甲苯透明、石蜡包埋。参照Paxinos等[16]的大鼠脑图谱,分别于距离前囟-2.64~-3.36 mm的海马区域选取3处冠状面脑组织(厚度3 μm),进行常规HE染色,在光学显微镜(×400)下对海马区进行观察及病理形态学分析。

1.8. 海马神经元计数

经左心室灌注固定、取脑石蜡包埋、制作海马冠状切片,常规HE染色。光镜下计数海马Sub、CA1、CA2和CA3区正常神经元[17, 18]。分别表示为每毫米线性长度内Sub、CA1、CA2和CA3中存活的神经元数量,取三个冠状切面的平均数。具体地说,统一在Sub、CA1、CA2和CA3细胞层中央设置一个矩形框(100 μm×250 μm)。只计算形态正常、细胞质和核轮廓清晰、可见核仁的神经元。排除缺血性神经元:表现为细胞体萎缩、呈三角形、核固缩、细胞质嗜酸性等特征。

1.9. HE染色观察视网膜组织病理学变化

腹腔注射舒泰-50(5 mg/kg)深度麻醉大鼠。快速摘除双侧眼球放入Davidson固定液中快速固定,12 h后取出置于4%多聚甲醛溶液中继续固定1周,经过组织脱水,透明,石蜡包埋。常规石蜡切片,均为包含有视网膜上方12点且经过视神经至下方6点的矢状面切片(厚度3 μm),常规HE染色。参照Ni等[19]的方法,选取包含有视网膜上方12点且经过视神经乳头至下方6点的切片。400倍光学显微镜下观察,使用cellSens图像分析软件拍照,距离视神经乳头1000~1500 μm处为拍摄区域,间隔150 μm选取3处不重叠500 μm区域测量视网膜各细胞层厚度及视网膜总厚度。计数视网膜神经节细胞(RGCs)数目,计算每500 μm长的视网膜所含RGCs数量[20]

1.10. HE染色观察视束组织病理学变化

参照Paxinos等[16]的大鼠脑图谱,于固定的大脑距离前囟-2.18~-3.8 mm处切片(厚度3 μm),覆盖整个视束。乙醇脱水,二甲苯透明,石蜡包埋,HE染色。光学显微镜下(×400)观察视束的细胞形态学变化。应用cellSens软件拍照分析。

1.11. Y迷宫实验

术后28 d进行Y迷宫实验测试学习记忆能力[21]。Y迷宫有3个臂,分为起始臂(Ⅰ)、其他臂(Ⅱ)、新异臂(Ⅲ)。大鼠初进迷宫时所在的臂为起始臂,另一臂为其他臂。Y迷宫实验于黑暗环境中进行,将新异臂用隔板封闭,大鼠由起始臂放入,于起始臂与其他臂中自由活动8 min,训练结束后大鼠被放回饲养笼。1 h后移开新异臂的隔板,大鼠由起始臂放入,在3个臂中自由探索8 min,记录各组大鼠进入新异臂的次数、活动距离、停留时间。Y迷宫实验所得录像与数据使用动物行为分析软件(DigBehv-YM,上海吉量软件科技有限公司)进行统计。

1.12. 明暗箱实验

术后28 d使用明暗箱检测大鼠的光线辨识能力。实验装置如下:暗箱(30 cm×30 cm×40 cm,光强度10 lux)与明箱(30 cm×30 cm×40 cm,光强度300 lux)依靠中央通道(10 cm×12 cm)相连,大鼠可通过此通道穿梭于暗箱和明箱之间。实验开始将大鼠置于明箱中央区域,记录10 min内大鼠在明箱与暗箱中的穿梭次数、活动距离与活动时间。明暗箱所得录像与数据使用动物行为分析软件(DigBehv-ST,上海吉量软件科技有限公司)进行统计。

1.13. 统计学处理

使用SPSS 21.0进行数据分析。各组数据以均数±标准差表示。两组间计量数据采用独立样本t检验进行两组均数的比较,多组间计量数据采用ANVOA分析,方差齐性选择Dunnett's t检验进行组间比较,方差不齐选用Dunnett T检验进行组间比较;生存率的比较采用log-rank检验;P < 0.05时认为差异具有统计学意义。

2. 结果

2.1. 缺血后处理模式确定

根据局部脑血流量、脑组织病理学变化、模型存活率与成功率,确定3次5 min间断缺血,中间隔两2次5 min再灌注、之后行再灌注,即15 min的间歇性全脑缺血(I4VO-Int15组)是适宜的造模条件。2.1.1 rCBF监测结果四血管夹闭后,I4VO-Con10组血流量降低至基线(9.3±0.8)%(图 3A);I4VO-Int10组rCBF稳定在基线的(9.2±0.9)%(图 3B)。I4VO-Int15组rCBF降低至基线的(10.7±1.0)%,再循环后出现轻微溢流(图 3C)。

图 3.

图 3

不同缺血模式大鼠rCBF的变化、存活率与造模成功率及海马各区域的组织病理学变化

Changes in regional cerebral blood flow (rCBF), survival rate, modeling success rate, and histopathological changes in different regions of the hippocampus in rats with different ischemic patterns. A-C: Changes in rCBF during GCI/R in I4VO-Con10, I4VO-Int10 and I4VO-Int15 groups, respectively. D: Survival rate and success rate of modeling in each group. survival rate and success rate. E: Histopathological changes in the subiculum, presubiculum and parasubiculum in the hippocampus after reperfusion for 24 h (Original magnification: ×400).Arrows indicate neurons with ischemic injury. Scale bars: 50 μm. n=8.

2.1.2. 模型存活率与成功率

再灌注24 h后,I4VO-Con10组、I4VO-Int10组以及I4VO-Int15组生存率分别为75%、100%、100%(图 3D)。

双侧颈总动脉夹闭后,观察大鼠的神经体征:意识丧失、翻正反射消失、眼球变白、自主呼吸加快作为达到全脑缺血的判定标准。实验过程凡不符合上述标准或大鼠出现抽搐及死亡视为造模失败。并基于再灌注24 h后大鼠海马CA1区神经元病理形态学改变的观察,I4VO-Con10组、I4VO-Int10组以及I4VO-Int15组造模的成功率分别为33%、13%、75%(图 3D)。

2.1.3. 海马组织病理学改变

在再灌注24 h后,通过HE染色观察大鼠海马神经元的损伤。假手术组海马区神经元排列均匀紧密,细胞核圆而规则,核膜清楚。造模组海马Sub、CA2、CA3区再灌注24 h后未见明显缺血变化,但两侧海马组织CA1区出现不同程度的神经元丢失,大量锥体细胞核固缩深染,胞浆嗜伊红呈空泡样变,细胞间隙明显增大(图 3E)。I4VO-Con10组、I4VO-Int10组以及I4VO-Int15组观察到出现海马缺血变化的大鼠比例分别为33%、13%、75%。

2.2. I4VO模型评价

2.2.1. 进行性海马组织学分析

假手术组大鼠海马区神经细胞数量、形态结构正常,排列均匀紧密,胞浆丰富,核膜、核仁清晰可见,细胞核呈圆形或椭圆形,无变性,无固缩或溶解现象。I4VO-D1组CA1区锥体细胞轻微核固缩、细胞皱缩呈三角形;I4VO-D3组海马Sub、CA1、CA2区可见明显的细胞核固缩,颜色深染,细胞呈三角形或者不规则形,细胞间质疏松;I4VO-D7组海马Sub、CA1、CA2区大量锥体神经元变性坏死,细胞核不规则并固缩深染,细胞间隙明显增大,胞浆呈空泡样变;I4VO-D14组海马Sub、CA1、CA2区正常神经细胞数量明显减少,残存的神经细胞呈缺血性改变,为瘦长形,核固缩深染,核仁消失,胞浆深嗜伊红,或核消失,仅见细胞轮廓;I4VO-D28组海马Sub、CA1、CA2区大量锥体神经元变性坏死,残存淡染的三角形胞质,缺血坏死区域可见吞噬细胞的聚集。海马CA3区神经元未观察到缺血性改变(图 4A)。

图 4.

图 4

I4VO模型术后28 d内海马组织进行性损伤及体质量与生存率情况

Progressive hippocampal tissue damage, body weight changes, and survival rates of the rats within 28 days after modeling. A: HE staining of the hippocampus of the rats at 1, 3, 7, 14, and 28 days after molding (×400). Arrows indicate neurons with ischemic injuries (Scale bar: 50 μm). B-E: Neuronal density of in the Sub, CA1, CA2 and CA3 region of the hippocampus, respectively. F: Changes in body weight over 28 days. G: Kaplan-Meier plot of the survival rate. Data are presented as Mean±SD (Sham group: n=8; I4VO: n=8; I4VO-D1: n=8; I4VO-D3: n=7; I4VO-D7: n=6; I4VO-D14: n=6; I4VO-D28: n=6). *P < 0.05, **P < 0.01, ***P < 0.001 vs Sham group.

定量计数各组大鼠海马Sub、CA1、CA2、CA3区锥体神经元存活数目,与假手术组相比,I4VO-D1组CA1区锥体细胞存活数目下降(P < 0.05,图 4C);Sub、CA2、CA3区神经元数量无明显差异。I4VO-D3组Sub、CA1区神经元平均数量显著减少(P < 0.05,P < 0.001,图 8B、C)。I4VO-D7、I4VO-D14、I4VO-D28组海马Sub、CA1、CA2区大量神经元发生缺血性损伤(P < 0.001,图 4BD)。

2.2.2. 生存状况

I4VO模型的动物,术后出现立毛、弓背、自发活动减少等症状。体质量下降,全实验周期内体质量与假手术组体质量差异有统计学意义(P˂0.01,图 4F)。假手术组于术后28 d内无大鼠死亡(n=8)。I4VO组(n=8/组):I4VO-D1组存活率100%;I4VO-D3组存活率87.5%(死亡1只);I4VO-D7组、I4VO-D14组和I4VO-D28组大鼠存活率为75%(每组死亡2只)(P>0.05,图 4G)。

2.2.3. 视网膜组织病理学分析

假手术组大鼠由内向外依次可见7层界限分明的视网膜细胞层,各层结构排列均一、整齐。I4VO-D1、I4VO-D3、I4VO-D7、I4VO-D14、I4VO-D28组大鼠视网膜各细胞层层次清晰整齐,颜色均一(图 5A)。视网膜及各细胞层厚度分析与RGCs细胞数量分析结果与假手术组之间的差别均没有统计学意义(P>0.05,图 5B~J)。

图 5.

图 5

I4VO模型术后视网膜与视束组织病理学情况

Histopathology of the retina and optic tract after modeling. A: HE staining of the retinal tissue within 28 days after modeling (×400, scale bar: 50 μm). B: Retina thickness. C: RPE thickness. D: PL thickness. E: ONL thickness. F: OPL thickness. G: INL thickness. H: IPL thickness. I: GCL/NFL thickness. J: RGCs per 500 μm in the GCL. K: Histopathology of optic tract after I4VO model within 28 days after molding (× 400, scale bar: 50 μm). RPE: Retinal pigment epithelium; PL: photoreceptor layer; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL/NFL: ganglion cell layer/nerve fiber layer. Data are presented as Mean±SD (Sham group: n=8; I4VO-D1: n=8; I4VO-D3: n=7; I4VO-D7: n=6; I4VO-D14: n=6; I4VO-D28: n=6).

2.2.4. 视束组织形态学分析

假手术组视束排列规则,层次清晰,无疏松。I4VO-D1、I4VO-D3、I4VO-D7、I4VO-D14、I4VO-D28组大鼠视束矢状面切片HE染色可见各实验周期的视神经纤维染色均匀,神经纤维束平行排列,未见缺血性改变(图 5K)。2.2.5 Y迷宫实验结果与假手术组比较,I4VO-D28组大鼠进入新异臂(Ⅲ)的次数、在新异臂中的活动距离无显著性差异(P>0.05;图 6 A、B),I4VO-D28组大鼠在新异臂中探索时间(24.2 ± 12.1)%较假手术组(42.5 ± 8.6)%明显下降(P < 0.05,图 6C)。I4VO组大鼠对新奇事物的探索能力下降,可能与学习记忆损伤有关。2.2.6明暗箱实验结果与假手术组相比,I4VO-D28组进入明箱次数(24±8次,图 6D)、明箱活动距离所占百分比(27.1±2.3)%(图 6E)明箱活动时间所占百分比(24.3± 4.0)%(图 6F)差异无统计学意义(P>0.05)。I4VO模型未影响视功能。

图 6.

图 6

Y迷宫与明暗箱实验结果

Results of Y-maze experiment and light/dark transition test. A: Number of entries into the Ⅲ arm. B: Percentage of distance traveled in the Ⅲ arm with respect to the total duration in the 3 arms of the Y-maze. C: Percentage of time spent in the Ⅲ arm with respect to the total duration in the 3 arms of the Y-maze. D: Number of entries into light box. E: Percentage of distance traveled in light box. F: Percentage of time spent in the light box. Data are presented as Mean±SD (Sham group: n=8; I4VO-D28: n=6). *P < 0.05 vs Sham group.

3. 讨论

在本研究中,我们对传统4VO法做出以下改进:(1)通过颈前分离,暴露第1颈椎与第2颈椎横突间隙穿过的椎动脉,在可视条件下精确定位并施行缺血及再灌注操作;(2)以微型动脉夹夹闭代替电凝阻断技术,减少手术对动物的损伤;(3)颈前一次手术,单纯腹侧手术入路取代既往腹背侧双重入路,分离双侧椎动脉与双侧颈总动脉,减小创伤;(4)同时夹闭双侧椎动脉与双侧颈总动脉,避免24 h间隔;并结合缺血后处理,于完全复灌前进行两个5 min/5 min再灌注/缺血循环,触发内源性机制发挥潜在神经保护作用,提高动物生存率[22]

传统4VO法以翻正反射完全丧失为达到缺血标准,造模成功率为70%~80%,127只大鼠中98只(77%)在双侧颈动脉结扎后15~30 s内出现意识丧失及翻正反射丧失,10只大鼠(8%)在双侧颈动脉结扎后2~3 min内因呼吸衰竭死亡。缺血30 min,松开颈动脉卡环后;24 h内约20%大鼠出现惊厥抽搐,在后续研究中被剔除,72 h内大鼠存活率为40%[6, 7]。相比之下,I4VO法夹闭双侧椎动脉和颈总动脉后,rCBF下降至基线的约10%(图 3C),并结合大鼠神经体征表现和再灌注24 h时大鼠海马CA1区神经元病理形态学改变为判定标准,造模成功率为75%(图 3D)。I4VO-D1组存活率100%;I4VO-D3组存活率87.5%(图 4G)。传统4VO法在缺血30 min进行再灌注24 h时,海马CAl区锥体神经元很少出现损伤迹象,缺血细胞的发生率在24~72 h持续增加,在72 h时大多数神经元表现为典型缺血性坏死[7, 23]。I4VO模型缺血再灌注24 h时海马CA1区锥体神经元出现缺血性改变,神经元存活数目下降,72 h时出现显著缺血性改变与神经元丢失(图 4AC)。I4VO法能够成功复制GCI/R模型,并很好的弥补了传统经典4VO模型的缺点。

大脑区海马CA1区神经元对缺血性损伤十分敏感,是GCI/R模型理想的实验观察对象[24, 25]。本实验中,再灌注阶段I4VO模型大鼠海马CA1区神经元出现明显缺血性损伤(图 4A),与传统4VO模型病变一致[7]。I4VO模型术后预定时间点(1、3、7、14、28 d)经HE染色观察海马神经元死亡情况:海马受损区域由CA1区逐渐累及Sub、CA2区域(图 4A~D)。因海马CA3区具有抵抗缺血性损伤的能力[26]。除CA3区外,海马其余各区段存活神经元密度大幅下降。海马神经元损伤与认知功能障碍密切相关,如记忆缺陷、执行功能等[24, 27]。Y迷宫利用啮齿类动物对新异环境的学习记忆能力,被广泛用于评估啮齿动物的认知功能[28]。术后28 d通过Y迷宫实验测定I4VO模型对大鼠的行为学影响。结果表明大鼠于新异臂中停留时间缩短(图 6C),提示认知功能异常[29]。由于八臂迷宫、水迷宫等试验需要由视觉提供空间关系线索进行引导[30]。若大鼠存在视力缺陷不利于明确神经病理变化与认知行为间的关系[31]。故选择Y迷宫这一种不是完全依赖动物视觉功能的检测手段来检测动物的学习记忆能力。

为进一步明确认知障碍是否部分归因于视觉功能异常。I4VO模型术后28 d进行明暗箱实验及视网膜、视束的组织病理学检查,尚未观察到视网膜缺血性损伤和视束病变(图 5图 6D~F)。与Barros等[31]研究结果一致,4VO模型并未破坏视网膜组织形态学的完整性。但我们不能否认伴随再灌注持续时间的延长可能会出现视觉功能障碍。Osborne等[32]表明,颈动脉闭塞3个月后视网膜组织形态学未受影响,9个月后大鼠视网膜中的光感受器最先受到影响产生退化。Gallyas等[33]发现在4VO法诱导的缺血性脑损伤中,视束的退化具有显著延迟的特点,短期内未见变性。且视网膜中大量表达具有抵抗缺血缺氧损伤的脑红蛋白[34]。相较于大脑而言,视网膜对缺血性损伤表现出较强的耐受性[35]

综上所述,I4VO模型是一种行之有效的模拟临床GCI/R的实验动物模型,避免了传统4VO模型的缺点,值得进一步的推广和应用。

Biographies

孙伟,助理研究员,E-mail: sunwei@shutcm.edu.cn

陈平,在读硕士研究生,E-mail: oocoopoom@163.com

Funding Statement

国家自然科学基金(81574078)

Supported by National Natural Science Foundation of China (81574078)

Contributor Information

孙 伟 (Wei SUN), Email: sunwei@shutcm.edu.cn.

陈 平 (Ping CHEN), Email: oocoopoom@163.com.

田 雪松 (Xuesong TIAN), Email: xuesong.tian@shutcm.edu.cn.

References

  • 1.Sun W, Chen YT, Zhang YJ, et al. A modified four vessel occlusion model of global cerebral ischemia in rats. J Neurosci Methods. 2021;352:109090. doi: 10.1016/j.jneumeth.2021.109090. [DOI] [PubMed] [Google Scholar]
  • 2.Jin Z, Guo P, Li X, et al. Neuroprotective effects of irisin against cerebral ischemia/reperfusion injury via Notch signaling pathway. Biomed Pharmacother. 2019;120:109452. doi: 10.1016/j.biopha.2019.109452. [DOI] [PubMed] [Google Scholar]
  • 3.Yao Y, Bade RG, Li GT, et al. Global-scale profiling of differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia-reperfusion injury rats. Cell Mol Neurobiol. 2022:1–16. doi: 10.1007/s10571-022-01277-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Hernández IH, Villa-González M, Martín G, et al. Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells. 2021;10(7):1639. doi: 10.3390/cells10071639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Sun K, Fan JY, Han JY. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory distu-rbances and neuron damagetu. Acta Pharm Sin B. 2015;5(1):8–24. doi: 10.1016/j.apsb.2014.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979;10(3):267–72. doi: 10.1161/01.STR.10.3.267. [DOI] [PubMed] [Google Scholar]
  • 7.Pulsinelli WA, Duffy TE. Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem. 1983;40(5):1500–3. doi: 10.1111/j.1471-4159.1983.tb13599.x. [DOI] [PubMed] [Google Scholar]
  • 8.Pulsinelli WA, Buchan AM. The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke. 1988;19(7):913–4. doi: 10.1161/01.STR.19.7.913. [DOI] [PubMed] [Google Scholar]
  • 9.Yamaguchi M, Calvert JW, Kusaka G, et al. One-stage anterior approach for four-vessel occlusion in rat. Stroke. 2005;36(10):2212–4. doi: 10.1161/01.STR.0000182238.08510.c5. [DOI] [PubMed] [Google Scholar]
  • 10.Todd NV, Picozzi P, Crockard HA, et al. Reperfusion after cerebral ischemia: influence of duration of ischemia. Stroke. 1986;17(3):460–6. doi: 10.1161/01.STR.17.3.460. [DOI] [PubMed] [Google Scholar]
  • 11.Sugio K, Horigome N, Sakaguchi T, et al. A model of bilateral hemispheric ischemia: modified four-vessel occlusion in rats. Stroke. 1988;19(7):922. [PubMed] [Google Scholar]
  • 12.Sugio K, Horigome N, Inami T, et al. Effects of pentobarbital and cyproheptadine on brain ischemia induced by bilateral occlusions of carotid arteries and vertebral arteries of second cervical vertebra in rats. Jpn J Pharmacol. 1988;47(3):327–9. doi: 10.1016/S0021-5198(19)43217-4. [DOI] [PubMed] [Google Scholar]
  • 13.Toda S, Ikeda Y, Teramoto A, et al. Highly reproducible rat model of reversible forebrain ischemia-modified four-vessel occlusion model and its metabolic feature. Acta Neurochir (Wien) 2002;144(12):1297–304. doi: 10.1007/s00701-002-1010-x. [DOI] [PubMed] [Google Scholar]
  • 14.Lu D, Wu YX, Qu Y, et al. A modified method to reduce variable outcomes in a rat model of four-vessel arterial occlusion. Neurol Res. 2016;38(12):1102–10. doi: 10.1080/01616412.2016.1249996. [DOI] [PubMed] [Google Scholar]
  • 15.Take Y, Shibota M, Nagaoka A, et al. Regional cerebral blood flow in rats with cerebral ischemia produced by bilateral vertebral and carotid artery occlusion. Folia Pharmacol Japonica. 1985;85(3):111–7. doi: 10.1254/fpj.85.111. [DOI] [PubMed] [Google Scholar]
  • 16.Paxinos G, Watson CRR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods. 1980;3(2):129–49. doi: 10.1016/0165-0270(80)90021-7. [DOI] [PubMed] [Google Scholar]
  • 17.Park KW, Baik HH, Jin BK. IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo. J Immunol. 2009;183(7):4666–74. doi: 10.4049/jimmunol.0803392. [DOI] [PubMed] [Google Scholar]
  • 18.Moorthi P, Premkumar P, Priyanka R, et al. Pathological changes in hippocampal neuronal circuits underlie age-associated neuro-degeneration and memory loss: positive clue toward SAD. Neuroscience. 2015;301:90–105. doi: 10.1016/j.neuroscience.2015.05.062. [DOI] [PubMed] [Google Scholar]
  • 19.Ni YQ, Xu GZ, Hu WZ, et al. Neuroprotective effects of naloxone against light-induced photoreceptor degeneration through inhibiting retinal microglial activation. Invest Ophthalmol Vis Sci. 2008;49(6):2589. doi: 10.1167/iovs.07-1173. [DOI] [PubMed] [Google Scholar]
  • 20.You YY, Gupta VK, Li JC, et al. FTY720 protects retinal ganglion cells in experimental Glaucoma. Invest Ophthalmol Vis Sci. 2014;55(5):3060. doi: 10.1167/iovs.13-13262. [DOI] [PubMed] [Google Scholar]
  • 21.Choi YJ, Choi YS. Effects of electromagnetic radiation from smartphones on learning ability and hippocampal progenitor cell proliferation in mice. Osong Public Health Res Perspect. 2016;7(1):12–7. doi: 10.1016/j.phrp.2015.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Li Z, Chen H, Lv J, et al. The application and neuroprotective mechanisms of cerebral ischemic post-conditioning: A review. Brain Res Bull. 2017;131:39–46. doi: 10.1016/j.brainresbull.2017.03.002. [DOI] [PubMed] [Google Scholar]
  • 23.Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8. doi: 10.1002/ana.410110509. [DOI] [PubMed] [Google Scholar]
  • 24.Neumann JT, Cohan CH, Dave KR, et al. Global cerebral ischemia: synaptic and cognitive dysfunction. Curr Drug Targets. 2013;14(1):20–35. doi: 10.2174/138945013804806514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Megiss M, Emri Z, Freund TF, et al. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience. 2001;102(3):527–40. doi: 10.1016/S0306-4522(00)00496-6. [DOI] [PubMed] [Google Scholar]
  • 26.Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience. 1991;40(3):599–636. doi: 10.1016/0306-4522(91)90001-5. [DOI] [PubMed] [Google Scholar]
  • 27.Amanda, Santiago Roflumilast promotes memory recovery and attenuates white matter injury in aged rats subjected to chronic cerebral hypoperfusion. Neuropharmacology. 2018;138:360–70. doi: 10.1016/j.neuropharm.2018.06.019. [DOI] [PubMed] [Google Scholar]
  • 28.Cleal M, Fontana BD, Ranson DC, et al. The Free-movement pattern Y-maze: a cross-species measure of working memory and executive function. Behav Res Methods. 2021;53(2):536–57. doi: 10.3758/s13428-020-01452-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.DANG Y, HE Q, YANG S, et al. FTH1-and SAT1-Induced astrocytic ferroptosis is involved in alzheimer's disease: Evidence from single-cell transcriptomic analysis. Pharmaceuticals. 2022;15(10):1177. doi: 10.3390/ph15101177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Davidson CM, Pappas BA, Stevens WD, et al. Chronic cerebral hypoperfusion: loss of pupillary reflex, visual impairment and retinal neurodegeneration. Brain Res. 2000;859(1):96–103. doi: 10.1016/S0006-8993(00)01937-5. [DOI] [PubMed] [Google Scholar]
  • 31.Barros CA, Ekuni R, Moro MA. The cognitive and histopathological effects of chronic 4-vessel occlusion in rats depend on the set of vessels occluded and the age of the animals. Behav Brain Res. 2009;197(2):378–87. doi: 10.1016/j.bbr.2008.10.023. [DOI] [PubMed] [Google Scholar]
  • 32.Osborne NN, Safa R, Nash MS. Photoreceptors are preferentially affected in the rat retina following permanent occlusion of the carotid arteries. Vis Res. 1999;39(24):3995–4002. doi: 10.1016/S0042-6989(99)00127-3. [DOI] [PubMed] [Google Scholar]
  • 33.Gallyas F, Hsu M, Buzsaki G. Delayed degeneration of the optic tract and neurons in the superior colliculus after forebrain ischemia. Neuroscience letters. 1992;144(1-2):177–9. doi: 10.1016/0304-3940(92)90744-R. [DOI] [PubMed] [Google Scholar]
  • 34.Wei X, Yu ZY, Cho KS, et al. Neuroglobin is an endogenous neuroprotectant for retinal ganglion cells against glaucomatous damage. Am J Pathol. 2011;179(6):2788–97. doi: 10.1016/j.ajpath.2011.08.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Osborne NN, Casson RJ, Wood JPM, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 2004;23(1):91–147. doi: 10.1016/j.preteyeres.2003.12.001. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES